-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathconfig.ini.cpu-only-example
116 lines (96 loc) · 3.13 KB
/
config.ini.cpu-only-example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
[store]
reject_threshold = 0.18081151451255284
# local embedding path
# for example:
# "maidalun1020/bce-embedding-base_v1"
# "BAAI/bge-m3"
# "https://api.siliconflow.cn/v1/embeddings"
embedding_model_path = "https://api.siliconflow.cn/v1/embeddings"
# reranker model, support list:
# "maidalun1020/bce-reranker-base_v1"
# "BAAI/bge-reranker-v2-minicpm-layerwise"
# "https://api.siliconflow.cn/v1/rerank"
reranker_model_path = "https://api.siliconflow.cn/v1/rerank"
# if using `siliconcloud` API as `embedding_model_path` or `reranker_model_path`, give the token
api_token = "!!!YOUR_SILICON_CLOUD_API_HERE!!!"
api_rpm = 1000
api_tpm = 40000
work_dir = "workdir"
[tugraph]
# TuGraph config
host = "127.0.0.1"
port = 7687
username = "admin"
password = "73@TuGraph"
name = "HuixiangDou2"
[web_search]
# web search engine support ddgs and serper
# For ddgs, see https://pypi.org/project/duckduckgo-search
# For serper, check https://serper.dev/api-key to get a free API key
engine = "serper"
serper_x_api_key = "SERPER_API_TOKEN"
save_dir = "logs/web_search_result"
[llm]
# Supports configuring multiple LLM remote APIs simultaneously.
# When a backend is specified in the code, the explicit LLM will be used;
# if not specified, the first one will be used.
[llm.siliconcloud]
# SiliconCloud API token
api_key = "sk-ducerqngypuXXXXX"
max_token_size = 32000
rpm = 8000
tpm = 50000
model = "Qwen/Qwen2.5-32B-Instruct"
[llm.local]
# Optional: vllm server
# vllm serve /data/share/Qwen2.5-7B-Instruct --enable-prefix-caching --served-model-name Qwen2.5-7B-Instruct --port 8000
api_key = "EMPTY"
max_token_size = 64000
rpm = 10000
tpm = 5000000
model = "Qwen2.5-7B-Instruct"
[llm.kimi]
# Optional: kimi API token
api_key = "eyJ0eXBlIjoiSldUIiXXXXX"
max_token_size = 40000
rpm = 500
tpm = 50000
[frontend]
type = "none"
webhook_url = "https://open.feishu.cn/open-apis/bot/v2/hook/xxxxxxxxxxxxxxx"
message_process_policy = "immediate"
[frontend.lark_group]
app_id = "cli_a53a34dcb778500e"
app_secret = "2ajhg1ixSvlNm1bJkH4tJhPfTCsGGHT1"
encrypt_key = "abc"
verification_token = "def"
[frontend.wechat_personal]
bind_port = 9527
[frontend.wechat_wkteam]
callback_ip = "101.133.161.11"
callback_port = 9528
redis_host = "101.133.161.11"
redis_port = "6380"
redis_passwd = "hxd123"
account = ""
password = ""
proxy = -1
dir = "wkteam"
[frontend.wechat_wkteam.43925126702]
name = "茴香豆群(大暑)"
introduction = "github https://github.com/InternLM/HuixiangDou 用户体验群"
[frontend.wechat_wkteam.44546611710]
name = "茴香豆群(立夏)"
introduction = "github https://github.com/InternLM/HuixiangDou 用户体验群"
[frontend.wechat_wkteam.38720590618]
name = "茴香豆群(惊蛰)"
introduction = "github https://github.com/InternLM/HuixiangDou 用户体验群"
[frontend.wechat_wkteam.48437885473]
name = "茴香豆群(谷雨)"
introduction = "github https://github.com/InternLM/HuixiangDou 用户体验群"
[frontend.wechat_wkteam.34744063953]
name = "茴香豆群(雨水)"
introduction = "github https://github.com/InternLM/HuixiangDou 用户体验群"
[frontend.wechat_wkteam.18356748488]
name = "卷卷群"
introduction = "ncnn contributors group"