-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
64 lines (51 loc) · 2.54 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from transformers import AutoConfig, AutoModelForSequenceClassification, Trainer, HfArgumentParser, set_seed
from modeling import MODEL, AutoTokenizer
from datasets import ClassificationDataset
from arguments import ModelArguments, DataTrainingArguments, TrainingArguments
from utils.utils import set_logger, path_checker, metrics_fn
from runner import Runner
def main():
# Get arguments
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Path check and set logger
path_checker(training_args)
set_logger(training_args)
# Get model name
model_name = model_args.model_name_or_path \
if model_args.model_name_or_path is not None \
else MODEL[model_args.model.lower()] \
if model_args.model.lower() in MODEL \
else model_args.model
# Set seed
set_seed(training_args.seed)
# Set model
config = AutoConfig.from_pretrained(model_args.config_name if model_args.config_name else model_name, cache_dir=model_args.cache_dir, num_labels=data_args.num_labels)
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name if model_args.tokenizer_name else model_name, cache_dir=model_args.cache_dir)
model = AutoModelForSequenceClassification.from_pretrained(model_name, config=config, cache_dir=model_args.cache_dir)
# Set dataset
train = ClassificationDataset(data_args.data_dir, tokenizer, data_args.task_name, data_args.max_seq_length,
data_args.overwrite_cache, mode="train") if training_args.do_train else None
dev = ClassificationDataset(data_args.data_dir, tokenizer, data_args.task_name, data_args.max_seq_length,
data_args.overwrite_cache, mode="dev") if training_args.do_eval else None
test = ClassificationDataset(data_args.data_dir, tokenizer, data_args.task_name, data_args.max_seq_length,
data_args.overwrite_cache, mode="test") if training_args.do_predict else None
# Set trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train,
eval_dataset=dev,
compute_metrics=metrics_fn,
)
# Set runner
runner = Runner(
model_name=model_name,
trainer=trainer,
tokenizer=tokenizer,
training_args=training_args,
test=test)
# Start
runner()
if __name__ == "__main__":
main()