-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_SVS_F0Diffusion.py
335 lines (286 loc) · 13.2 KB
/
train_SVS_F0Diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import os
import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.cuda.amp import autocast, GradScaler
from models import DiffusionModels
######### export TORCH_CUDNN_V8_API_DISABLED=1
torch.cuda.empty_cache()
import torch._dynamo.config
torch._dynamo.config.suppress_errors = True
torch._dynamo.config.verbose=True
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import utils
from data_utils import TextAudioLoader_SVS_f0diff, TextAudioCollate_SVS_f0diff, DistributedBucketSampler
#torch.autograd.set_detect_anomaly(True) # 逆誤差伝搬のエラー部分を自動で見つける機能
torch.backends.cudnn.benchmark = True # 学習早くなるらしい(知らんけど
global_step = 0
import warnings
warnings.filterwarnings(action='ignore')
def main():
""" GPUのみの学習を許可 """
assert torch.cuda.is_available(), "CPU training is not allowed."
n_gpus = torch.cuda.device_count()
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '65520'
hps = utils.get_hparams() # config.yamlやargparseは、ここで読み込まれている。
if hps["DDP_use"] is True:
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,)) # DDP ON
else:
run(rank=0, n_gpus=1, hps=hps) # DDP OFF
def run(rank, n_gpus, hps):
global global_step
if rank == 0: # 1番目のGPUであれば入る(GPUが複数ある場合を想定
logger = utils.get_logger(hps["model_dir"])
logger.info(hps)
writer = SummaryWriter(log_dir=hps["model_dir"])
writer_eval = SummaryWriter(log_dir=os.path.join(hps["model_dir"], "eval"))
# Linux Only
if hps["DDP_use"] is True:
dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
# 乱数の再現性確保
torch.manual_seed(hps["seed"])
torch.cuda.set_device(rank)
# データセットの読み込み君
train_dataset = TextAudioLoader_SVS_f0diff(audiopaths_and_text= hps["train_data_path"] ,
hparams = hps)
vocab_size = train_dataset.get_ph_vocab_size()
# 似た長さのデータをモデルに流す君
train_sampler = DistributedBucketSampler(dataset = train_dataset,
batch_size = hps["batch_size"],
boundaries = [32,300,400,500,600,700,800,900,1000],
num_replicas= n_gpus,
rank = rank,
shuffle = True) # シャッフル指定
# 入力するデータに0を加えて長さを統一する君
collate_fn = TextAudioCollate_SVS_f0diff()
# 上三つを統べる
train_loader = DataLoader(dataset=train_dataset,
num_workers=hps["num_workers"], # データ読み込みに使用するCPUのスレッド数
shuffle=False,
pin_memory=True, # Trueだとなんか動作早くなるらしい(知らんけど
collate_fn=collate_fn,
batch_sampler=train_sampler)
# 1番目のGPUであれば
if rank == 0:
eval_dataset = TextAudioLoader_SVS_f0diff(audiopaths_and_text=hps["eval_data_path"],
hparams =hps)
eval_loader = DataLoader(dataset = eval_dataset,
num_workers = 1,
shuffle = False,
batch_size = hps["batch_size"],
pin_memory = True,
drop_last = False,
collate_fn = collate_fn)
# モデルを作成
net_g = DiffusionModels(hps=hps, vocab_size=vocab_size).cuda(rank)
#net_g = torch.compile(net_g)
# 最適化手法
optim_g = torch.optim.AdamW(params = net_g.parameters(),
lr = float(hps['learning_rate']),
betas = hps["betas"],
eps = float(hps["eps"]))
# checkpoint 確認
in_progress_checkpoint_path = utils.latest_checkpoint_path(hps["model_dir"], "G_*.pth")
if os.path.isfile(in_progress_checkpoint_path): # 学習再開
try:
_, _, _, epoch_str = utils.load_checkpoint(in_progress_checkpoint_path, net_g, optim_g)
global_step = (epoch_str - 1) * len(train_loader)
print("### Resume learning mode ###")
except:
net_g = utils.load_model_diffsize(in_progress_checkpoint_path, net_g, hps, optim_g)
epoch_str = 1
global_step = 0.
print("### Resume learning mode ###")
elif hps["is_finetune"] is True: # ファインチューニング
net_g = utils.load_model_diffsize(hps["finetune_G"], net_g, hps, optim_g)
epoch_str = 1
global_step = 0
print("### FineTuning mode ###")
else: # どちらでもない→初期状態から
epoch_str = 1
global_step = 0
print("### Initial state mode ###")
global_step = (epoch_str - 1) * len(train_loader)
# エポックに応じて自動で学習率を変える
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optimizer = optim_g,
gamma = hps["lr_decay"],
last_epoch = epoch_str-2)
# float16で計算して,高速化するか
scaler = GradScaler(enabled=hps["fp16_run"])
# Linux Only
if hps["DDP_use"] is True:
net_g = DDP(net_g, device_ids=[rank])
# 学習/評価処理
for epoch in range(epoch_str, int(hps["max_epochs"]) + 1):
if rank==0:
train_and_evaluate(rank, epoch, hps, net_g, optim_g, scheduler_g, scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
else:
train_and_evaluate(rank, epoch, hps, net_g, optim_g, scheduler_g, scaler, [train_loader, None], None, None)
scheduler_g.step()
# 最終モデルの保存
utils.save_checkpoint(net_g, optim_g, hps["learning_rate"], epoch, os.path.join(hps["model_dir"], "G_LastModel.pth".format(global_step)))
def train_and_evaluate(rank, epoch, hps, net_g, optim_g, scheduler_g, scaler, loaders, logger, writers):
train_loader, eval_loader = loaders
if writers is not None:
writer, writer_eval = writers
train_loader.batch_sampler.set_epoch(epoch)
global global_step
net_g.train() # 学習モードへ
for batch_idx, (f0,f0_lengths,\
ph_IDs,ph_IDs_lengths,\
ph_frame_dur,\
noteID,noteID_lengths,
speakerID) in enumerate(train_loader):
# Forward Process
with autocast(enabled=hps["fp16_run"]):
loss_f0 = net_g(f0=f0.cuda(rank),
f0_len=f0_lengths.cuda(rank),
IDs=ph_IDs.cuda(rank),
IDs_len=ph_IDs_lengths.cuda(rank),
IDs_dur=ph_frame_dur.cuda(rank),
NoteIDs=noteID.cuda(rank),
NoteID_len=noteID_lengths.cuda(rank),
g=speakerID.cuda(rank))
#losses = loss_f0 + loss_vuv
losses = loss_f0
optim_g.zero_grad()
scaler.scale(losses).backward()
scaler.unscale_(optim_g)
scaler.step(optim_g)
scaler.update()
# 記録 / 評価
if rank==0:
if global_step % hps["log_interval"] == 0:
lr = optim_g.param_groups[0]['lr']
#losses =
logger.info('Train Epoch: {} [{:.0f}%]'.format(
epoch,
100. * batch_idx / len(train_loader)))
#logger.info([x.item() for x in [losses, loss_f0, loss_vuv]] + [global_step, lr])
logger.info([x.item() for x in [losses]] + [global_step, lr])
#scalar_dict = {"loss": losses, "loss_f0" : loss_f0, "loss_vuv":loss_vuv}
scalar_dict = {"loss_f0": losses}
utils.summarize(
writer=writer,
global_step=global_step,
scalars=scalar_dict)
if global_step % hps["eval_interval"] == 0:
evaluate(hps=hps,
net_g=net_g,
eval_loader=eval_loader,
writer_eval=writer_eval)
utils.save_checkpoint(model=net_g,
optimizer=optim_g,
learning_rate=hps["learning_rate"],
iteration=epoch,
checkpoint_path=os.path.join(hps["model_dir"], "G_{}.pth".format(global_step)))
global_step += 1
if rank == 0:
logger.info('====> Epoch: {}'.format(epoch))
def evaluate(hps, net_g, eval_loader, writer_eval):
net_g.eval()
rank = 0
count = 0
loss_f0_sum = 0
with torch.no_grad():
for batch_idx, (f0,f0_lengths,\
ph_IDs,ph_IDs_lengths,\
ph_frame_dur,\
noteID,noteID_lengths,
speakerID) in enumerate(eval_loader):
# Forward Process
with autocast(enabled=hps["fp16_run"]):
loss_f0 = net_g(f0=f0.cuda(rank),
f0_len=f0_lengths.cuda(rank),
IDs=ph_IDs.cuda(rank),
IDs_len=ph_IDs_lengths.cuda(rank),
IDs_dur=ph_frame_dur.cuda(rank),
NoteIDs=noteID.cuda(rank),
NoteID_len=noteID_lengths.cuda(rank),
g=speakerID.cuda(rank))
loss_f0_sum += loss_f0
count += 1
f0_gt=f0 [0][0].view(1, 1,-1).cuda(rank)
f0_gt_len=f0_lengths [0] .view(-1) .cuda(rank)
ph_IDs=ph_IDs [0] .view(1,-1) .cuda(rank)
ph_IDs_len=ph_IDs_lengths [0] .view(-1) .cuda(rank)
ph_IDs_dur=ph_frame_dur [0] .view(1,-1) .cuda(rank)
NoteIDs=noteID [0] .view(1,-1) .cuda(rank)
NoteID_len=noteID_lengths [0] .view(-1) .cuda(rank)
speakerID=speakerID [0] .view(-1) .cuda(rank)
f0_pd = net_g.sampling(condition=[ph_IDs, ph_IDs_len, ph_IDs_dur,
NoteIDs, NoteID_len, None, speakerID])
scalar_dict = {"loss_f0": loss_f0_sum/count}
#scalar_dict = {"loss": loss_f0_sum + loss_vuv_sum,
# "loss_f0": loss_f0_sum,
# "loss_vuv" : loss_vuv_sum}
f0_gt = f0_gt[0][0].to('cpu').detach().numpy().copy()
f0_pd = f0_pd[0][0].to('cpu').detach().numpy().copy()
#vuv_gt= vuv_gt.view(-1).to('cpu').detach().numpy().copy()
#vuv_pd= vuv_pd.view(-1).to('cpu').detach().numpy().copy()
f0_gt_image= generate_graph(vector=f0_gt,
label="F0 gt",
color="red",
x_label = 'Frames',
y_label = "f0")
f0_pd_image= generate_graph(vector=f0_pd ,
label="F0 pd",
color="blue",
x_label = 'Frames',
y_label = "f0")
#vuv_gt_image=generate_graph(vector=vuv_gt,
# label="Voice Unvoice Value",
# color="red",
# x_label = 'Frames',
# y_label = "0=mask, 1=uv, 2=v")
#vuv_pd_image= generate_graph(vector=vuv_pd,
# label="Voice Unvoice Value",
# color="blue",
# x_label = 'Frames',
# y_label = "0=mask, 1=uv, 2=v",)
image_dict = {
"f0/gt":f0_gt_image ,
"f0/pd":f0_pd_image ,
#"vuv/gt":vuv_gt_image ,
#"vuv/pd":vuv_pd_image ,
}
utils.summarize(
writer=writer_eval,
global_step=global_step,
scalars=scalar_dict,
images=image_dict
)
net_g.train()
def generate_graph(vector,
label="NoName",
color="blue",
title="Title",
x_label = 'Frames',
y_label = "y_labels",
figsize=(20,5)):
fig = plt.figure(figsize=figsize)
x = np.arange(0, len(vector))
plt.plot(x, vector, label=label, color=color)
plt.title(title)
plt.xlabel(x_label)
plt.ylabel(y_label)
#plt.ylim(y_val_min, y_val_max)
fig.canvas.draw()
plot_image = fig.canvas.renderer._renderer
image_numpy = np.array(plot_image)
plt.clf()
plt.close()
return image_numpy
# このファイルを実行したら、ココから始まる
if __name__ == "__main__":
os.environ[
"TORCH_DISTRIBUTED_DEBUG"
] = "DETAIL"
main()