forked from microsoft/onnxruntime
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocal_kernel_registry_test.cc
329 lines (269 loc) · 10.5 KB
/
local_kernel_registry_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#include "core/session/inference_session.h"
#include <algorithm>
#include <functional>
#include <iterator>
#include <thread>
#include "core/common/logging/logging.h"
#include "core/framework/execution_provider.h"
#include "core/framework/op_kernel.h"
#include "core/framework/session_state.h"
#include "core/graph/graph_viewer.h"
#include "core/graph/model.h"
#include "core/graph/op.h"
#include "core/providers/cpu/cpu_execution_provider.h"
#include "core/providers/cpu/math/element_wise_ops.h"
#include "core/framework/tensorprotoutils.h"
#include "test/capturing_sink.h"
#include "test/test_environment.h"
#include "test_utils.h"
#include "gtest/gtest.h"
#include "core/graph/schema_registry.h"
#include "core/framework/customregistry.h"
using namespace ONNX_NAMESPACE;
using namespace onnxruntime::common;
namespace onnxruntime {
namespace test {
// Foo kernel which is doing Add
template <typename T>
class FooKernel : public OpKernel {
public:
FooKernel(const OpKernelInfo& info) : OpKernel(info) {}
Status Compute(OpKernelContext* context) const {
const auto* X = context->Input<Tensor>(0);
const auto* W = context->Input<Tensor>(1);
auto X_Data = X->Data<T>();
auto W_Data = W->Data<T>();
auto shape = X->Shape().GetDims();
auto* Y = context->Output(0, shape);
auto* Y_Data = Y->MutableData<T>();
size_t size = 1;
for (size_t i = 0; i < shape.size(); i++) {
size *= shape[i];
}
for (size_t i = 0; i < size; i++) {
Y_Data[i] = X_Data[i] + W_Data[i];
}
return Status::OK();
}
};
ONNX_NAMESPACE::OpSchema GetFooSchema() {
ONNX_NAMESPACE::OpSchema schema("Foo", "unknown", 0);
schema.Input(0,
"A",
"First operand, should share the type with the second operand.",
"T");
schema.Input(
1,
"B",
"Second operand. With broadcasting can be of smaller size than A. "
"If broadcasting is disabled it should be of the same size.",
"T");
schema.Output(0, "C", "Result, has same dimensions and type as A", "T");
schema.TypeConstraint(
"T",
OpSchema::numeric_types_for_math_reduction(),
"Constrain input and output types to high-precision numeric tensors.");
schema.SinceVersion(7);
return schema;
}
//For test purpose, we register this Foo kernel to Mul op.
//Once the custom schema is ready, should update this.
KernelDefBuilder FooKernelDef(const char* schema_name) {
KernelDefBuilder def;
def.SetName(schema_name)
.SetDomain(onnxruntime::kOnnxDomain)
.SinceVersion(7)
.Provider(onnxruntime::kCpuExecutionProvider)
.TypeConstraint("T", DataTypeImpl::GetTensorType<float>());
return def;
}
OpKernel* CreateFooKernel(const OpKernelInfo& kernel_info) {
return new FooKernel<float>(kernel_info);
}
// kernel with optional outputs
KernelDefBuilder OptionalKernelDef() {
KernelDefBuilder def;
def.SetName("OptionalOp")
.SetDomain(onnxruntime::kOnnxDomain)
.SinceVersion(6)
.Provider(onnxruntime::kCpuExecutionProvider)
.TypeConstraint("T", DataTypeImpl::GetTensorType<float>());
return def;
}
ONNX_NAMESPACE::OpSchema GetOptionalOpSchema() {
ONNX_NAMESPACE::OpSchema schema("OptionalOp", "unknown", 0);
schema.Input(0,
"X",
"First operand, should share the type with the second operand.",
"T");
schema.Input(
1,
"W",
"Second operand. If provided, add it to the output",
"T",
OpSchema::Optional);
schema.Output(0, "Y", "Result, has same dimensions and type as A", "T");
schema.Output(1, "Y2", "Result, has same dimensions and type as A", "T", OpSchema::Optional);
schema.TypeConstraint(
"T",
OpSchema::numeric_types_for_math_reduction(),
"Constrain input and output types to high-precision numeric tensors.");
schema.SinceVersion(6);
return schema;
}
template <typename T>
class OptionalOpKernel : public OpKernel {
public:
OptionalOpKernel(const OpKernelInfo& info) : OpKernel(info) {}
Status Compute(OpKernelContext* context) const {
const auto* X = context->Input<Tensor>(0);
const auto* W = context->Input<Tensor>(1);
auto* X_Data = X->Data<T>();
auto& shape = X->Shape().GetDims();
auto* Y = context->Output(0, shape);
auto* Y_Data = Y->MutableData<T>();
size_t size = 1;
for (size_t i = 0; i < shape.size(); i++) {
size *= shape[i];
}
for (size_t i = 0; i < size; i++) {
Y_Data[i] = X_Data[i];
}
auto* Y2 = context->Output(1, shape);
// Y2 is used or not
if (Y2) {
auto Y2_Data = Y2->MutableData<T>();
for (size_t i = 0; i < size; i++) {
Y2_Data[i] = X_Data[i];
}
}
//W is used or not
if (W) {
auto* W_Data = W->Data<T>();
for (size_t i = 0; i < size; i++) {
Y_Data[i] += W_Data[i];
}
if (Y2) {
auto* Y2_Data = Y2->MutableData<T>();
for (size_t i = 0; i < size; i++) {
Y2_Data[i] += W_Data[i];
}
}
}
return Status::OK();
}
};
OpKernel* CreateOptionalOpKernel(const OpKernelInfo& kernel_info) {
return new OptionalOpKernel<float>(kernel_info);
}
static const std::string MUL_MODEL_URI = "testdata/mul_1.onnx";
static const std::string FOO_MODEL_URI = "testdata/foo_1.onnx";
static const std::string FOO_TRUNCATE_MODEL_URI = "testdata/foo_2.onnx";
static const std::string OPTIONAL_MODEL1_URI = "testdata/optional_1.onnx";
void RunSession(InferenceSession& session_object,
RunOptions& run_options,
std::vector<int64_t>& dims_x,
std::vector<float>& values_x,
std::vector<int64_t>& dims_y,
std::vector<float>& values_y) {
// prepare inputs
OrtValue ml_value;
CreateMLValue<float>(TestCPUExecutionProvider()->GetAllocator(0, OrtMemTypeDefault), dims_x, values_x, &ml_value);
NameMLValMap feeds;
feeds.insert(std::make_pair("X", ml_value));
// prepare outputs
std::vector<std::string> output_names;
output_names.push_back("Y");
std::vector<OrtValue> fetches;
// Now run
common::Status st = session_object.Run(run_options, feeds, output_names, &fetches);
std::cout << "Run returned status: " << st.ErrorMessage() << std::endl;
EXPECT_TRUE(st.IsOK());
ASSERT_EQ(1, fetches.size());
auto& rtensor = fetches.front().Get<Tensor>();
TensorShape expected_shape(dims_y);
EXPECT_EQ(expected_shape, rtensor.Shape());
const std::vector<float> found(rtensor.template Data<float>(), rtensor.template Data<float>() + expected_shape.Size());
ASSERT_EQ(values_y, found);
}
TEST(CustomKernelTests, CustomKernelWithBuildInSchema) {
SessionOptions so;
so.session_logid = "InferenceSessionTests.NoTimeout";
// Register a foo kernel which is doing Add, but bind to Mul.
std::shared_ptr<CustomRegistry> registry = std::make_shared<CustomRegistry>();
InferenceSession session_object{so, &DefaultLoggingManager()};
EXPECT_TRUE(session_object.RegisterCustomRegistry(registry).IsOK());
auto def = FooKernelDef("Mul");
EXPECT_TRUE(registry->RegisterCustomKernel(def, CreateFooKernel).IsOK());
EXPECT_TRUE(session_object.Load(MUL_MODEL_URI).IsOK());
EXPECT_TRUE(session_object.Initialize().IsOK());
RunOptions run_options;
run_options.run_tag = "one session/one tag";
// prepare inputs
std::vector<int64_t> dims_x = {3, 2};
std::vector<float> values_x = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f};
// prepare expected inputs and outputs
std::vector<int64_t> expected_dims_y = {3, 2};
// now the expected value should be Add's result.
std::vector<float> expected_values_y = {2.0f, 4.0f, 6.0f, 8.0f, 10.0f, 12.0f};
// Now run
RunSession(session_object, run_options, dims_x, values_x, expected_dims_y, expected_values_y);
}
TEST(CustomKernelTests, CustomKernelWithCustomSchema) {
SessionOptions so;
so.session_logid = "InferenceSessionTests.NoTimeout";
std::shared_ptr<CustomRegistry> registry = std::make_shared<CustomRegistry>();
InferenceSession session_object{so, &DefaultLoggingManager()};
EXPECT_TRUE(session_object.RegisterCustomRegistry(registry).IsOK());
//register foo schema
auto foo_schema = GetFooSchema();
std::vector<OpSchema> schemas = {foo_schema};
EXPECT_TRUE(registry->RegisterOpSet(schemas, onnxruntime::kOnnxDomain, 5, 7).IsOK());
auto def = FooKernelDef("Foo");
//Register a foo kernel which is doing Add, but bind to Mul.
EXPECT_TRUE(registry->RegisterCustomKernel(def, CreateFooKernel).IsOK());
EXPECT_TRUE(session_object.Load(FOO_MODEL_URI).IsOK());
EXPECT_TRUE(session_object.Initialize().IsOK());
RunOptions run_options;
run_options.run_tag = "one session/one tag";
// prepare inputs
std::vector<int64_t> dims_x = {3, 2};
std::vector<float> values_x = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f};
// prepare expected inputs and outputs
std::vector<int64_t> expected_dims_y = {3, 2};
// now the expected value should be Add's result.
std::vector<float> expected_values_y = {2.0f, 4.0f, 6.0f, 8.0f, 10.0f, 12.0f};
// Now run
RunSession(session_object, run_options, dims_x, values_x, expected_dims_y, expected_values_y);
}
TEST(CustomKernelTests, CustomKernelWithOptionalOutput) {
SessionOptions so;
so.session_logid = "InferenceSessionTests.NoTimeout";
//reigster optional schema
auto optional_schema = GetOptionalOpSchema();
std::vector<OpSchema> schemas = {optional_schema};
std::shared_ptr<CustomRegistry> registry = std::make_shared<CustomRegistry>();
EXPECT_TRUE(registry->RegisterOpSet(schemas, onnxruntime::kOnnxDomain, 5, 7).IsOK());
auto def = OptionalKernelDef();
//Register a foo kernel which is doing Add, but bind to Mul.
EXPECT_TRUE(registry->RegisterCustomKernel(def, CreateOptionalOpKernel).IsOK());
InferenceSession session_object{so, &DefaultLoggingManager()};
EXPECT_TRUE(session_object.RegisterCustomRegistry(registry).IsOK());
EXPECT_TRUE(session_object.Load(OPTIONAL_MODEL1_URI).IsOK());
EXPECT_TRUE(session_object.Initialize().IsOK());
RunOptions run_options;
run_options.run_tag = "one session/one tag";
// prepare inputs
std::vector<int64_t> dims_x = {3, 2};
std::vector<float> values_x = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f};
// prepare expected inputs and outputs
std::vector<int64_t> expected_dims_y = {3, 2};
// now the expected value should be equal result.
std::vector<float> expected_values_y = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f};
// Now run
RunSession(session_object, run_options, dims_x, values_x, expected_dims_y, expected_values_y);
}
} // namespace test
} // namespace onnxruntime