-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmisc_test.py
72 lines (61 loc) · 2.58 KB
/
misc_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Miscellaneous tests."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import test_util
misc = tf.contrib.ndlstm.misc
def _rand(*size):
return np.random.uniform(size=size).astype("f")
class LstmMiscTest(test_util.TensorFlowTestCase):
def testPixelsAsVectorDims(self):
with self.test_session():
inputs = tf.constant(_rand(2, 7, 11, 5))
outputs = misc.pixels_as_vector(inputs)
tf.global_variables_initializer().run()
result = outputs.eval()
self.assertEqual(tuple(result.shape), (2, 7 * 11 * 5))
def testPoolAsVectorDims(self):
with self.test_session():
inputs = tf.constant(_rand(2, 7, 11, 5))
outputs = misc.pool_as_vector(inputs)
tf.global_variables_initializer().run()
result = outputs.eval()
self.assertEqual(tuple(result.shape), (2, 5))
def testOneHotPlanes(self):
with self.test_session():
inputs = tf.constant([0, 1, 3])
outputs = misc.one_hot_planes(inputs, 4)
tf.global_variables_initializer().run()
result = outputs.eval()
self.assertEqual(tuple(result.shape), (3, 1, 1, 4))
target = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1]])
self.assertAllClose(result.reshape(-1), target.reshape(-1))
def testOneHotMask(self):
with self.test_session():
data = np.array([[0, 1, 2], [2, 0, 1]]).reshape(2, 3, 1)
inputs = tf.constant(data)
outputs = misc.one_hot_mask(inputs, 3)
tf.global_variables_initializer().run()
result = outputs.eval()
self.assertEqual(tuple(result.shape), (2, 3, 3))
target = np.array([[[1, 0, 0], [0, 1, 0]], [[0, 1, 0], [0, 0, 1]],
[[0, 0, 1], [1, 0, 0]]]).transpose(1, 2, 0)
self.assertAllClose(result.reshape(-1), target.reshape(-1))
if __name__ == "__main__":
tf.test.main()