-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy patheigenWorms_task.py
84 lines (71 loc) · 2.81 KB
/
eigenWorms_task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from torch import nn, optim
from torch.utils.data import DataLoader
import network
import torch
from pathlib import Path
import data
import numpy as np
import argparse
parser = argparse.ArgumentParser(description='training parameters')
parser.add_argument('--nhid', type=int, default=32,
help='hidden size')
parser.add_argument('--epochs', type=int, default=50,
help='max epochs')
parser.add_argument('--device', type=str, default=torch.device('cuda' if torch.cuda.is_available() else 'cpu'),
help='computing device')
parser.add_argument('--batch', type=int, default=8,
help='batch size')
parser.add_argument('--lr', type=float, default=0.00609,
help='learning rate')
parser.add_argument('--dt', type=float, default=0.00017,
help='parameter $Delta t$ of LEM')
parser.add_argument('--seed', type=int, default=5544,
help='random seed')
args = parser.parse_args()
print(args)
ninp = 6
nout = 5
train_dataset, test_dataset, valid_dataset = data.EigenWorms()
trainloader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch)
testloader = DataLoader(test_dataset, shuffle=False, batch_size=len(test_dataset))
validloader = DataLoader(valid_dataset, shuffle=False, batch_size=len(valid_dataset))
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(args.seed)
np.random.seed(args.seed)
model = network.LEM(ninp, args.nhid, nout, args.dt).to(args.device)
objective = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=args.lr)
def test(dataloader):
model.eval()
correct = 0
with torch.no_grad():
for data, label in dataloader:
data = data.permute(1, 0, 2)
output = model(data.to(args.device))
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(label.data.view_as(pred).to(args.device)).sum()
accuracy = 100. * correct / len(dataloader.dataset)
return accuracy.item()
best_eval = 0.
for epoch in range(args.epochs):
model.train()
for i, (data, label) in enumerate(trainloader):
optimizer.zero_grad()
data = data.permute(1, 0, 2)
output = model(data.to(args.device))
loss = objective(output, label.to(args.device))
loss.backward()
optimizer.step()
valid_acc = test(validloader)
test_acc = test(testloader)
if (valid_acc > best_eval):
best_eval = valid_acc
final_test_acc = test_acc
Path('result').mkdir(parents=True, exist_ok=True)
f = open('result/eigenWorms_log.txt', 'a')
f.write('eval accuracy: ' + str(round(valid_acc, 2)) + '\n')
f.close()
f = open('result/eigenWorms_log.txt', 'a')
f.write('final test accuracy: ' + str(round(final_test_acc, 2)) + '\n')
f.close()