forked from microsoft/Stable-Diffusion-WebUI-DirectML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathort_model_config.py
176 lines (148 loc) · 4.99 KB
/
ort_model_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
from dataclasses import dataclass
from enum import Enum
from json import JSONEncoder
import torch
class ModelType(Enum):
UNET = 0
CONTROLNET = 1
LORA = 2
UNDEFINED = -1
@classmethod
def from_string(cls, s):
return getattr(cls, s.upper(), None)
def __str__(self):
return self.name.lower()
@dataclass
class ModelConfig:
profile: dict
fp32: bool
inpaint: bool
unet_hidden_dim: int = 4
def is_compatible_from_dict(self, feed_dict: dict):
distance = 0
for k, v in feed_dict.items():
_min, _opt, _max = self.profile[k]
v_tensor = torch.Tensor(list(v.shape))
r_min = torch.Tensor(_max) - v_tensor
r_opt = (torch.Tensor(_opt) - v_tensor).abs()
r_max = v_tensor - torch.Tensor(_min)
if torch.any(r_min < 0) or torch.any(r_max < 0):
return (False, distance)
distance += r_opt.sum() + 0.5 * (r_max.sum() + 0.5 * r_min.sum())
return (True, distance)
def is_compatible(self, width: int, height: int, batch_size: int, max_embedding: int):
distance = 0
sample = self.profile["sample"]
embedding = self.profile["encoder_hidden_states"]
batch_size *= 2
width = width // 8
height = height // 8
_min, _opt, _max = sample
if _min[0] > batch_size or _max[0] < batch_size:
return (False, distance)
if _min[2] > height or _max[2] < height:
return (False, distance)
if _min[3] > width or _max[3] < width:
return (False, distance)
_min_em, _opt_em, _max_em = embedding
if _min_em[1] > max_embedding or _max_em[1] < max_embedding:
return (False, distance)
distance = (
abs(_opt[0] - batch_size)
+ abs(_opt[2] - height)
+ abs(_opt[3] - width)
+ 0.5 * (abs(_max[2] - height) + abs(_max[3] - width))
)
return (True, distance)
class ModelConfigEncoder(JSONEncoder):
def default(self, o: ModelConfig):
return o.__dict__
@dataclass
class ProfileSettings:
bs_min: int
bs_opt: int
bs_max: int
h_min: int
h_opt: int
h_max: int
w_min: int
w_opt: int
w_max: int
t_min: int
t_opt: int
t_max: int
static_shape: bool = False
def __str__(self) -> str:
return "Batch Size: {}-{}-{}\tHeight: {}-{}-{}\tWidth: {}-{}-{}\tToken Count: {}-{}-{}".format(
self.bs_min,
self.bs_opt,
self.bs_max,
self.h_min,
self.h_opt,
self.h_max,
self.w_min,
self.w_opt,
self.w_max,
self.t_min,
self.t_opt,
self.t_max,
)
def out(self):
return (
self.bs_min,
self.bs_opt,
self.bs_max,
self.h_min,
self.h_opt,
self.h_max,
self.w_min,
self.w_opt,
self.w_max,
self.t_min,
self.t_opt,
self.t_max,
)
def token_to_dim(self):
self.t_min = (self.t_min // 75) * 77
self.t_opt = (self.t_opt // 75) * 77
self.t_max = (self.t_max // 75) * 77
def set_static_shape(self):
self.t_min = self.t_max = self.t_opt
self.bs_min = self.bs_max = self.bs_opt
self.h_min = self.h_max = self.h_opt
self.w_min = self.w_max = self.w_opt
self.static_shape = True
def get_latent_dim(self):
return (
self.h_min // 8,
self.h_opt // 8,
self.h_max // 8,
self.w_min // 8,
self.w_opt // 8,
self.w_max // 8,
)
def get_a1111_batch_dim(self):
static_batch = self.bs_min == self.bs_max == self.bs_opt
if self.t_max <= 77:
return (self.bs_min * 2, self.bs_opt * 2, self.bs_max * 2)
elif self.t_max > 77 and static_batch:
return (self.bs_opt, self.bs_opt, self.bs_opt)
elif self.t_max > 77 and not static_batch:
if self.t_opt > 77:
return (self.bs_min, self.bs_opt, self.bs_max * 2)
return (self.bs_min, self.bs_opt * 2, self.bs_max * 2)
else:
raise Exception("Uncovered case in get_batch_dim")
class ProfilePrests:
def __init__(self):
self.profile_presets = {}
self.default = ProfileSettings(1, 1, 16, 256, 512, 4096, 256, 512, 4096, 75, 75, 750)
self.default_xl = ProfileSettings(1, 1, 16, 256, 1024, 4096, 256, 1024, 4096, 75, 75, 750)
def get_choices(self):
return [*list(self.profile_presets.keys()), "Default"]
def get_default(self, is_xl: bool):
return self.default_xl if is_xl else self.default