forked from microsoft/Stable-Diffusion-WebUI-DirectML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathort_exporter.py
195 lines (165 loc) · 5.92 KB
/
ort_exporter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import gc
import os
import shutil
import time
from logging import getLogger
from pathlib import Path
import onnx
import torch
import torch.nn.functional as F
from ort_model_config import ProfileSettings
from ort_model_helper import UNetModel
from ort_optimizer import OrtStableDiffusionOptimizer
logger = getLogger(__name__)
def swap_sdpa(func):
def wrapper(*args, **kwargs):
swap_sdpa = hasattr(F, "scaled_dot_product_attention")
old_sdpa = getattr(F, "scaled_dot_product_attention", None) if swap_sdpa else None
if swap_sdpa:
delattr(F, "scaled_dot_product_attention")
ret = func(*args, **kwargs)
if swap_sdpa and old_sdpa:
F.scaled_dot_product_attention = old_sdpa
return ret
return wrapper
def check_model_uses_external_data(onnx_model: onnx.ModelProto) -> bool:
for initializer in onnx_model.graph.initializer:
if initializer.HasField("data_location") and initializer.data_location == onnx.TensorProto.EXTERNAL:
return True
return False
@swap_sdpa
def export_onnx(
onnx_path: str,
modelobj: UNetModel,
profile: ProfileSettings,
opset: int = 17,
shape_inference: bool = False,
):
if os.path.exists(onnx_path):
logger.info("Skip exporting to ONNX since %s exists.", onnx_path)
onnx_model = onnx.load(onnx_path, load_external_data=False)
modelobj.use_external_data = check_model_uses_external_data(onnx_model)
del onnx_model
return
s = time.time()
print("Exporting to ONNX...")
inputs = modelobj.get_sample_input(
profile.bs_opt * 2,
profile.h_opt // 8,
profile.w_opt // 8,
profile.t_opt,
)
model = modelobj.unet
path = Path(onnx_path)
tmp_dir = os.path.abspath("onnx_export_tmp")
os.makedirs(tmp_dir, exist_ok=True)
tmp_path = os.path.join(tmp_dir, "model.onnx")
try:
logger.info("Exporting ONNX to %s", tmp_path)
with torch.inference_mode(), torch.autocast("cuda"):
torch.onnx.export(
model,
inputs,
tmp_path,
export_params=True,
opset_version=opset,
do_constant_folding=True,
input_names=modelobj.get_input_names(),
output_names=modelobj.get_output_names(),
dynamic_axes=modelobj.get_dynamic_axes(),
)
except Exception as e:
print(f"Exporting to ONNX failed. {e}")
return
os.makedirs(path.parent, exist_ok=True)
onnx_model = onnx.load(tmp_path, load_external_data=False)
if modelobj.use_external_data or check_model_uses_external_data(onnx_model):
if shape_inference:
shape_onnx_path = os.path.join(tmp_dir, "model_with_shape.onnx")
logger.info(
"Running shape inference and save onnx to a temporary file %s",
shape_onnx_path,
)
onnx.shape_inference.infer_shapes_path(tmp_path, shape_onnx_path)
logger.info("ONNX model uses external data. Saving as external data.")
onnx_model = onnx.load(shape_onnx_path if shape_inference else tmp_path, load_external_data=True)
onnx.save(
onnx_model,
str(path),
save_as_external_data=True,
all_tensors_to_one_file=True,
location=path.name + ".data",
size_threshold=1024,
)
modelobj.use_external_data = True
else:
if shape_inference:
onnx_model = shape_inference.infer_shapes(onnx_model)
onnx.save(onnx_model, str(path))
else:
shutil.move(tmp_path, str(path))
e = time.time()
print(f"Exported ONNX {path} in {int(e-s)} seconds")
shutil.rmtree(tmp_dir)
del onnx_model
def optimize_onnx(
optimized_onnx_path: str,
input_onnx_path: str,
use_fp16: bool,
model_type: str = "unet",
use_external_data: bool = False,
):
print("Optimizing ONNX...")
tmp_dir = os.path.abspath("onnx_opt_tmp")
os.makedirs(tmp_dir, exist_ok=True)
logger.debug(tmp_dir)
s = time.time()
optimizer = OrtStableDiffusionOptimizer(model_type)
logger.debug(f"use_fp16={use_fp16}")
is_ok = True
try:
if not use_external_data:
optimizer.optimize(
input_onnx_path,
optimized_onnx_path,
tmp_dir,
float16=use_fp16,
keep_io_types=True,
fp32_op_list=None,
optimize_by_ort=True,
optimize_by_fusion=True,
use_external_data=use_external_data,
)
else:
fusion_onnx_path = input_onnx_path[:-5] + "_fusion.onnx"
if os.path.exists(fusion_onnx_path):
print("skip fusion since path exists", fusion_onnx_path)
else:
optimizer.optimize_step1(
input_onnx_path,
fusion_onnx_path,
final_target_float16=use_fp16,
use_external_data=use_external_data,
float16=use_fp16,
keep_io_types=True,
fp32_op_list=None,
)
gc.collect()
torch.cuda.empty_cache()
optimizer.optimize_step2(
fusion_onnx_path,
optimized_onnx_path,
use_external_data=use_external_data,
)
# After we have the optimized onnx, we can remove the temporary onnx file from step 1.
os.remove(fusion_onnx_path)
data_file = fusion_onnx_path + ".data"
if os.path.exists(data_file):
os.remove(data_file)
e = time.time()
print(f"Optimized onnx {optimized_onnx_path} in {int(e-s)} seconds")
except Exception as e:
print(f"Optimizing ONNX failed. {e}")
is_ok = False
shutil.rmtree(tmp_dir)
return is_ok