-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmanage_data.py
135 lines (118 loc) · 5.27 KB
/
manage_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import numpy as np
import re
import itertools
from collections import Counter
def sent_cleanup(string):
"""
Tokenization/string cleaning for all datasets except for SST.
Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
"""
string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " \( ", string)
string = re.sub(r"\)", " \) ", string)
string = re.sub(r"\?", " \? ", string)
string = re.sub(r"\s{2,}", " ", string)
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
return string.strip().lower()
def load_data_and_labels():
"""
Loads MR polarity data from files, splits the data into words and generates labels.
Returns split sentences and labels.
"""
# Load data from files
pos_examples = open("./data/rt-polaritydata/rt-polarity.pos", "r").readlines()
neg_examples = open("./data/rt-polaritydata/rt-polarity.neg", "r").readlines()
# strip off whitespace from begin and/or end of our sentences
neg_examples = [sent.strip() for sent in neg_examples]
pos_examples = [sent.strip() for sent in pos_examples]
# Split by words
x_text = pos_examples + neg_examples
x_text = [sent_cleanup(sent) for sent in x_text]
# Generate labels
# Two-dimensional labelling allow for a measure of both 'positiveness' and 'negativeness' I think
pos_labels = [[0, 1] for _ in pos_examples]
neg_labels = [[1, 0] for _ in neg_examples]
y = np.concatenate([pos_labels, neg_labels], 0)
return [x_text, y]
def batch_iter(data, batch_size, num_epochs, shuffle=True):
"""
Creates a batch iterator for our dataset.
"""
data = np.array(data)
data_size = len(data)
num_batches_per_epoch = data_size // batch_size + 1
for epoch in range(num_epochs):
# Shuffle the data at each epoch
if shuffle:
shuffle_indices = np.random.permutation(np.arange(data_size))
data = data[shuffle_indices]
for batch_num in range(num_batches_per_epoch):
start_index = batch_num * batch_size
end_index = min( (batch_num + 1) * batch_size, data_size )
yield data[start_index:end_index] # Code Note: don't create a new list. slower
def reformat_product_file( filepath ):
"""
Transform Hu and Lui's Customer Review dataset format to two simple lists.
One list of positive sentences and one list of negative sentences.
"""
lines = list(open(filename, "r").readlines())
pos_sents, neg_sents = [], []
# [t] designates a title. After the title line the sentences begin.
# the are ended by another [t] title line, or EOF
past_first_title = False
for line in lines:
if line.startswith('[t]'):
past_first_title = True
continue # don't bother matching a title line
if past_first_title:
# Our pattern looks for sentences (started by '##') that are preceded by
# positive or negative sentiment declarations, denoted by [-*num*] or [+*num*]
match = re.match( r'^(.+\[[+-]\d\],?)+##.+', line)
# The sentence starts after the SECOND '#'
if '-' in match.group():
pos_sents.append( line[line.index('#')+2:] )
elif '+' in match.group():
neg_sents.append( line[line.index('#')+2:] )
return pos_sents, neg_sents
def save_formatted_customer_review_dataset( pos_sents, neg_sents ):
"""
Save the formatted dataset to file so we don't have to reconvert.
"""
# Check if files don't already exist
raise NotImplementedError
def load_customer_review_data_and_labels():
"""
Loads Customer Review data from files, extracts only sentences with sentiment tags,
splits the data into words, and generates labels.
Returns split sentences and labels.
"""
pos_examples, neg_examples = [], []
# get filename for each product file in
product_files = ["./data/customer-review-data/Apex-AD2600-Progressive-scan-DVD-player.txt",
"./data/customer-review-data/Canon-G3.txt",
"./data/customer-review-data/Creative-Labs-Nomad-Jukebox-Zen-Xtra-40GB.txt"
"./data/customer-review-data/Nikon-coolpix-4300.txt"
"./data/customer-review-data/Nokia-6610.txt"]
# build 2 lists containing grouping all positive sentences from all files and all negative sentences
# from all files
for pf in product_files:
pos, neg = reformat_product_file( pf )
pos_examples.extend(pos)
neg_examples.extend(neg)
pos_examples = [sent.strip() for sent in pos_examples]
neg_examples = [sent.strip() for sent in neg_examples]
# Split by words
x_text = pos_examples + neg_examples
x_text = [sent_cleanup(sent) for sent in x_text]
# Generate labels
positive_labels = [[0, 1] for _ in pos_examples]
negative_labels = [[1, 0] for _ in neg_examples]
y = np.concatenate([positive_labels, negative_labels], 0)
return [x_text, y]