-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathtrain.py
211 lines (176 loc) · 7.01 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import os, sys
import pickle
from collections import defaultdict
from sklearn.preprocessing import MultiLabelBinarizer
import numpy as np
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
from torch.autograd import Variable
from sklearn.metrics import roc_auc_score
import torch.optim as optim
import matplotlib.pyplot as plt
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
def compute_AUCs(gt, pred):
AUROCs = []
gt_np = gt.cpu().numpy()
pred_np = pred.cpu().numpy()
for i in range(N_CLASSES):
AUROCs.append(roc_auc_score(gt_np[:, i], pred_np[:, i]))
return AUROCs
# ====== prepare dataset ======
class ChestXrayDataSet(Dataset):
def __init__(self, train_or_valid = "train", transform=None):
data_path = sys.argv[1]
self.train_or_valid = train_or_valid
if train_or_valid == "train":
self.X = np.uint8(np.load(data_path + "train_X_small.npy")*255*255)
with open(data_path + "train_y_onehot.pkl", "rb") as f:
self.y = pickle.load(f)
sub_bool = (self.y.sum(axis=1)!=0)
self.y = self.y[sub_bool,:]
self.X = self.X[sub_bool,:]
else:
self.X = np.uint8(np.load(data_path + "valid_X_small.npy")*255*255)
with open(data_path + "valid_y_onehot.pkl", "rb") as f:
self.y = pickle.load(f)
self.label_weight_pos = (len(self.y)-self.y.sum(axis=0))/len(self.y)
self.label_weight_neg = (self.y.sum(axis=0))/len(self.y)
# self.label_weight_pos = len(self.y)/self.y.sum(axis=0)
# self.label_weight_neg = len(self.y)/(len(self.y)-self.y.sum(axis=0))
self.transform = transform
def __getitem__(self, index):
"""
Args:
index: the index of item
Returns:
image and its labels
"""
current_X = np.tile(self.X[index],3)
label = self.y[index]
label_inverse = 1- label
weight = np.add((label_inverse * self.label_weight_neg),(label * self.label_weight_pos))
if self.transform is not None:
image = self.transform(current_X)
return image, torch.from_numpy(label).type(torch.FloatTensor), torch.from_numpy(weight).type(torch.FloatTensor)
def __len__(self):
return len(self.y)
# construct model
class DenseNet121(nn.Module):
"""Model modified.
The architecture of our model is the same as standard DenseNet121
except the classifier layer which has an additional sigmoid function.
"""
def __init__(self, out_size):
super(DenseNet121, self).__init__()
self.densenet121 = torchvision.models.densenet121(pretrained=True)
num_ftrs = self.densenet121.classifier.in_features
self.densenet121.classifier = nn.Sequential(
nn.Linear(num_ftrs, out_size),
nn.Sigmoid()
)
def forward(self, x):
x = self.densenet121(x)
return x
if __name__ == '__main__':
# prepare training set
train_dataset = ChestXrayDataSet(train_or_valid="train",
transform=transforms.Compose([
transforms.ToPILImage(),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])
]))
augment_img = []
augment_label = []
augment_weight = []
for i in range(4):
for j in range(len(train_dataset)):
single_img, single_label, single_weight = train_dataset[j]
augment_img.append(single_img)
augment_label.append(single_label)
augment_weight.append(single_weight)
if j % 1000==0:
print(j)
# shuffe data
perm_index = torch.randperm(len(augment_label))
augment_img = torch.stack(augment_img)[perm_index]
augment_label = torch.stack(augment_label)[perm_index]
augment_weight = torch.stack(augment_weight)[perm_index]
# prepare validation set
valid_dataset = ChestXrayDataSet(train_or_valid="valid",
transform=transforms.Compose([
transforms.ToPILImage(),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])
]))
valid_loader = DataLoader(dataset=valid_dataset, batch_size=64, shuffle=False, num_workers=16)
# ====== start trianing =======
cudnn.benchmark = True
N_CLASSES = 8
BATCH_SIZE = 64
# initialize and load the model
model = DenseNet121(N_CLASSES).cuda()
model = torch.nn.DataParallel(model).cuda()
optimizer = optim.Adam(model.parameters(),lr=0.0002, betas=(0.9, 0.999))
total_length = len(augment_img)
for epoch in range(10): # loop over the dataset multiple times
print("Epoch:",epoch)
running_loss = 0.0
# shuffle
perm_index = torch.randperm(len(augment_label))
augment_img = augment_img[perm_index]
augment_label = augment_label[perm_index]
augment_weight = augment_weight[perm_index]
for index in range(0, total_length , BATCH_SIZE):
if index+BATCH_SIZE > total_length:
break
# zero the parameter gradients
optimizer.zero_grad()
inputs_sub = augment_img[index:index+BATCH_SIZE]
labels_sub = augment_label[index:index+BATCH_SIZE]
weights_sub = augment_weight[index:index+BATCH_SIZE]
inputs_sub, labels_sub = Variable(inputs_sub.cuda()), Variable(labels_sub.cuda())
weights_sub = Variable(weights_sub.cuda())
# forward + backward + optimize
outputs = model(inputs_sub)
criterion = nn.BCELoss()
loss = criterion(outputs, labels_sub)
loss.backward()
optimizer.step()
running_loss += loss.data[0]
# ======== validation ========
# switch to evaluate mode
model.eval()
# initialize the ground truth and output tensor
gt = torch.FloatTensor()
gt = gt.cuda()
pred = torch.FloatTensor()
pred = pred.cuda()
for i, (inp, target, weight) in enumerate(valid_loader):
target = target.cuda()
gt = torch.cat((gt, target), 0)
# bs, n_crops, c, h, w = inp.size()
input_var = Variable(inp.view(-1, 3, 224, 224).cuda(), volatile=True)
output = model(input_var)
# output_mean = output.view(bs, n_crops, -1).mean(1)
pred = torch.cat((pred, output.data), 0)
CLASS_NAMES = ['Atelectasis', 'Cardiomegaly','Effusion', 'Infiltration',
'Mass','Nodule', 'Pneumonia', 'Pneumothorax']
AUROCs = compute_AUCs(gt, pred)
AUROC_avg = np.array(AUROCs).mean()
print('The average AUROC is {AUROC_avg:.3f}'.format(AUROC_avg=AUROC_avg))
for i in range(N_CLASSES):
print('The AUROC of {} is {}'.format(CLASS_NAMES[i], AUROCs[i]))
model.train()
# print statistics
print('[%d] loss: %.3f' % (epoch + 1, running_loss / 715 ))
torch.save(model.state_dict(),'DenseNet121_aug4_pretrain_noWeight_'+str(epoch+1)+'_'+str(AUROC_avg)+'.pkl')
print('Finished Training')