Skip to content

Latest commit

 

History

History
83 lines (58 loc) · 3.23 KB

README.md

File metadata and controls

83 lines (58 loc) · 3.23 KB

ManiBox: Enhancing Spatial Grasping Generalization via Scalable Simulation Data Generation

The code of the simulator part (including teacher policy and data generation) could be seen in sim branch.

Installation Instructions

conda deactivate
conda create -n manibox python=3.9
conda activate manibox

pip install -e .

# for student inference code, you should install these in `isaac lab conda env`:
pip install einops

Dataset

The full space version dataset is in 🛢️Download link. It has a total of 38,150 trajectories, which you should rename to integration.pkl in any directory.

Student Training Instructions

The train.py will will read integration.pkl in the --dataset directory as a dataset. integration.pkl is a dict containing three keys, image_data, qpos_data, action_data, with shape (num_episodes, episode_len , dim).

# BBOX RNN
python ManiBox/train.py --policy_class RNN --batch_size 128 --dataset ../ --num_episodes 38000  --loss_function l1  --rnn_layers 3 --rnn_hidden_dim 512 --actor_hidden_dim 512 --num_epochs 50 --lr 2e-3 --gradient_accumulation_steps 1 > train.log 2>&1

Deployment Instructions

python ManiBox/inference_real_world.py  --ckpt_dir /PATH/TO/ManiBox/ckpt/2024-xx-xx_xx-xx-xxRNN --policy_class RNN --ckpt_name policy_best.ckpt

Other Instructions

Teacher Policy Training Instructions

# PPO Training
python source/standalone/workflows/rsl_rl/train.py --task Isaac-Lift-Cube-MobileAloha-v0  --num_envs 4096  --headless

Data Collection Instructions

# Collect data in simulator
python source/standalone/workflows/rsl_rl/play_collect_data.py --task Isaac-Lift-Cube-MobileAloha-Play-v0 \
--num_envs 40  --load_run  2024-09-12_17-42-24 --headless --enable_cameras

Simulator Inference Instruction

# Student policy inference in simulator
python source/standalone/workflows/rsl_rl/student_inference_orbit_multi_envs.py --task Isaac-Lift-Cube-MobileAloha-Play-v0 \
--ckpt_dir "\PATH\TO\Your\CKPT" --policy_class "RNN" --ckpt_name policy_best.ckpt --nheads 48 --num_train_step 38000 --seed 0

Acknowledgement

BibTeX

If you find our work useful for your project, please consider citing the following paper.

@article{tan2024manibox,
  title={ManiBox: Enhancing Spatial Grasping Generalization via Scalable Simulation Data Generation},
  author={Tan, Hengkai and Xu, Xuezhou and Ying, Chengyang and Mao, Xinyi and Liu, Songming and Zhang, Xingxing and Su, Hang and Zhu, Jun},
  journal={arXiv preprint arXiv:2411.01850},
  year={2024}
}