-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmerge_mapelites.py
617 lines (571 loc) · 21.1 KB
/
merge_mapelites.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
import argparse
import glob
import logging
import os
from typing import List
import numpy as np
from config import (
MOCK_SIM_NAME,
SIMULATOR_NAMES,
NUM_CONTROL_NODES,
MAX_ANGLE,
NUM_SAMPLED_POINTS,
AGENT_TYPES,
)
from envs.beamng.config import MAP_SIZE
from factories import make_test_generator, make_env, make_agent
from global_log import GlobalLog
from test_generators.mapelites.config import (
FEATURE_COMBINATIONS,
TURNS_COUNT_FEATURE_NAME,
CURVATURE_FEATURE_NAME,
QUALITY_METRICS_NAMES,
)
from test_generators.mapelites.individual import Individual
from test_generators.mapelites.mapelites import MapElites
from utils.randomness import set_random_seed
from utils.report_utils import (
load_mapelites_report,
plot_map_of_elites,
plot_raw_map_of_elites,
resize_map_of_elites,
write_mapelites_report,
get_name_min_and_max_2d_features,
load_individual_report,
)
parser = argparse.ArgumentParser()
parser.add_argument(
"--folder", help="Path of the folder where the logs are", type=str, default="logs"
)
parser.add_argument(
"--filepaths",
nargs="+",
help="Paths of the folders where the reports are",
type=str,
required=True,
)
parser.add_argument(
"--output-dir",
help="Output folder where the merged heatmap will be saved",
type=str,
default=None,
)
parser.add_argument(
"--execute",
help="Run all individuals in the merged population",
action="store_true",
default=False,
)
parser.add_argument(
"--quality-metric",
help="Name of the quality metric",
type=str,
choices=QUALITY_METRICS_NAMES,
default=None,
)
parser.add_argument(
"--min-quality-metric",
help="Min value of the quality metric specified above (for normalization purposes)",
type=float,
default=None,
)
parser.add_argument(
"--max-quality-metric",
help="Max value of the quality metric specified above (for normalization purposes)",
type=float,
default=None,
)
parser.add_argument(
"--quality-metric-merge",
help="How to merge the quality metric maps",
type=str,
choices=["avg", "min", "max"],
default=None,
)
parser.add_argument(
"--load-probability-map",
help="Load probability map",
action="store_true",
default=False,
)
parser.add_argument(
"--multiply-probabilities",
help="Multiply probabilities when merging the probability maps (by default the probabilities are averaged)",
action="store_true",
default=False,
)
parser.add_argument(
"--weighted-average-probabilities",
help="Whether to consider a weighted average of the probabilities",
action="store_true",
default=False,
)
parser.add_argument(
"--failure-probability",
help="Whether to consider failure probability when building the map (default success_probability)",
action="store_true",
default=False,
)
# run arguments
parser.add_argument(
"--env-name",
help="Should be the name of the third simulator",
type=str,
choices=SIMULATOR_NAMES,
)
parser.add_argument(
"--donkey-exe-path",
help="Path to the donkey simulator executor",
type=str,
default=None,
)
parser.add_argument(
"--udacity-exe-path",
help="Path to the udacity simulator executor",
type=str,
default=None,
)
parser.add_argument(
"--beamng-user-path", help="Beamng user path", type=str, default=None
)
parser.add_argument(
"--beamng-home-path", help="Beamng home path", type=str, default=None
)
parser.add_argument("--seed", help="Random seed", type=int, default=-1)
parser.add_argument(
"--add-to-port", help="Modify default simulator port", type=int, default=-1
)
parser.add_argument(
"--headless", help="Headless simulation", action="store_true", default=False
)
parser.add_argument(
"--agent-type", help="Agent type", type=str, choices=AGENT_TYPES, default="random"
)
parser.add_argument(
"--test-generator",
help="Which test generator to use",
type=str,
choices=["random"],
default="random",
)
parser.add_argument(
"--model-path",
help="Path to agent model with extension (only if agent_type == 'supervised')",
type=str,
default=None,
)
parser.add_argument(
"--predict-throttle",
help="Predict steering and throttle. Model to load must have been trained using an output dimension of 2",
action="store_true",
default=False,
)
parser.add_argument(
"--feature-combination",
help="Feature combination",
type=str,
choices=FEATURE_COMBINATIONS,
default="{}-{}".format(TURNS_COUNT_FEATURE_NAME, CURVATURE_FEATURE_NAME),
)
# cyclegan options
parser.add_argument(
"--cyclegan-experiment-name",
type=str,
default=None,
help="name of the experiment. It decides where to store samples and models",
)
parser.add_argument(
"--gpu-ids",
type=str,
default="-1",
help="gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU",
)
parser.add_argument(
"--cyclegan-checkpoints-dir", type=str, default=None, help="models are saved here"
)
parser.add_argument(
"--cyclegan-epoch",
type=str,
default=-1,
help="which epoch to load? set to latest to use latest cached model",
)
args = parser.parse_args()
# FIXME: Merge multiple maps of the across different simulators: consider refactoring with merge_maps_simulator.py
# this file loads the reports, computes the metrics from scratch and merges those
if __name__ == "__main__":
assert len(args.filepaths) <= 2, "Cannot merge more than 2 maps"
for filepath in args.filepaths:
assert os.path.exists(
os.path.join(args.folder, filepath)
), "{} does not exist".format(os.path.join(args.folder, filepath))
if args.output_dir is None:
merged_heatmap_filepath = os.path.join(
args.folder, "merged_{}".format("_".join(args.filepaths))
)
else:
merged_heatmap_filepath = os.path.join(args.folder, args.output_dir)
os.makedirs(name=merged_heatmap_filepath, exist_ok=True)
logg = GlobalLog("merge_mapelites")
reports = []
for filepath in args.filepaths:
if args.load_probability_map or args.quality_metric is not None:
report_filepath = os.path.join(args.folder, filepath)
assert os.path.exists(
report_filepath
), "Report file {} does not exist".format(report_filepath)
reports.append(load_individual_report(filepath=report_filepath))
else:
all_report_files = glob.glob(
os.path.join(args.folder, filepath, "report_iterations_*.json")
)
report_file = list(
filter(
lambda rf: int(rf[rf.rindex("_") + 1 : rf.rindex(".")]) > 0,
all_report_files,
)
)
assert len(report_file) == 1, "Only one match supported. Found: {}".format(
len(report_file)
)
report_file = report_file[0]
reports.append(load_mapelites_report(filepath=report_file))
individuals_in_population: List[Individual] = []
for i, report in enumerate(reports):
if args.load_probability_map or args.quality_metric is not None:
all_individuals_report = [
individual
for feature_bin in report.keys()
for individual in report[feature_bin]
]
individuals_in_population.extend(all_individuals_report)
logg.info(
"Report #{}, all individuals report: {}".format(
i, len(all_individuals_report)
)
)
else:
individuals_in_population.extend(
list(
filter(
lambda ind: ind.id in report["ids_in_population"],
report["individuals"],
)
)
)
logg.info(
"Report #{}, all individuals length: {}, individuals in population: {}".format(
i, len(report["individuals"]), len(report["ids_in_population"])
)
)
(
feature_x_name,
feature_y_name,
min_feature_x,
max_feature_x,
min_feature_y,
max_feature_y,
) = get_name_min_and_max_2d_features(individuals=individuals_in_population)
logg.info(
"Feature x: {} in [{}, {}], Feature y: {} in [{}, {}]".format(
feature_x_name,
min_feature_x,
max_feature_x,
feature_y_name,
min_feature_y,
max_feature_y,
)
)
resized_maps = []
resized_maps_counts = []
fill_value = None
for i, report in enumerate(reports):
if args.load_probability_map or args.quality_metric is not None:
individuals = [
individual
for feature_bin in report.keys()
for individual in report[feature_bin]
]
else:
individuals = list(
filter(
lambda ind: ind.id in report["ids_in_population"],
report["individuals"],
)
)
resized_map, resized_map_counts, fill_value = resize_map_of_elites(
x_axis_min=min_feature_x,
x_axis_max=max_feature_x,
y_axis_min=min_feature_y,
y_axis_max=max_feature_y,
individuals=individuals,
occupation_map=not args.failure_probability,
failure_probability=args.failure_probability,
quality_metric=args.quality_metric,
)
resized_maps.append(resized_map)
resized_maps_counts.append(resized_map_counts)
# assuming two maps
assert len(resized_maps) == 2, "Only two maps are supported at the moment"
resized_map_1 = resized_maps[0]
resized_map_2 = resized_maps[1]
resized_map_counts_1 = resized_maps_counts[0]
resized_map_counts_2 = resized_maps_counts[1]
valued_keys_1 = set(
filter(lambda key: resized_map_1[key] != fill_value, resized_map_1.keys())
)
valued_keys_2 = set(
filter(lambda key: resized_map_2[key] != fill_value, resized_map_2.keys())
)
bins_intersection = valued_keys_1.intersection(valued_keys_2)
logg.info("# Keys that conflict: {}".format(len(bins_intersection)))
values = dict()
if args.load_probability_map or args.quality_metric is not None:
# resized_map_1 and resized_map_2 have the same keys
for k in resized_map_1.keys():
if k in bins_intersection:
value_1 = resized_map_1[k]
value_2 = resized_map_2[k]
if args.load_probability_map:
if args.multiply_probabilities:
values[k] = value_1 * value_2
elif args.weighted_average_probabilities:
assert (
k in resized_map_counts_1 and k in resized_map_counts_2
), "Resized map counts do not have the key {}".format(k)
assert (
resized_map_counts_1[k] != 0
and resized_map_counts_2[k] != 0
), "Resized map counts cannot be zero"
values[k] = (
value_1 * resized_map_counts_1[k]
+ value_2 * resized_map_counts_2[k]
) / (resized_map_counts_1[k] + resized_map_counts_2[k])
else:
values[k] = (value_1 + value_2) / 2
elif args.quality_metric is not None:
assert (
args.min_quality_metric is not None
), "min_quality_metric argument is needed for normalization"
assert (
args.max_quality_metric is not None
), "max_quality_metric argument is needed for normalization"
assert (
args.min_quality_metric < args.max_quality_metric
), "Min quality metric {} > Max quality metric {}".format(
args.min_quality_metric, args.max_quality_metric
)
normalized_value_1 = (value_1 - args.min_quality_metric) / (
args.max_quality_metric - args.min_quality_metric
)
normalized_value_2 = (value_2 - args.min_quality_metric) / (
args.max_quality_metric - args.min_quality_metric
)
assert (
0 <= normalized_value_1 <= 1
), "Value {}, original {}, not in bounds, index: {}, merge type: {}, bounds: ({}, {})".format(
normalized_value_1,
value_1,
k,
args.quality_metric_merge,
args.min_quality_metric,
args.max_quality_metric,
)
assert (
0 <= normalized_value_2 <= 1
), "Value {}, original {}, not in bounds, index: {}, merge type: {}, bounds: ({}, {})".format(
normalized_value_2,
value_2,
k,
args.quality_metric_merge,
args.min_quality_metric,
args.max_quality_metric,
)
if args.quality_metric_merge == "avg":
values[k] = (normalized_value_1 + normalized_value_2) / 2
elif args.quality_metric_merge == "min":
values[k] = min(normalized_value_1, normalized_value_2)
elif args.quality_metric_merge == "max":
values[k] = max(normalized_value_1, normalized_value_2)
else:
raise RuntimeError(
"Unknown quality_metric_merge: {}".format(
args.quality_metric_merge
)
)
assert (
0 <= values[k] <= 1
), "Value {} not in bounds, index: {}, merge type: {}".format(
values[k], k, args.quality_metric_merge
)
logg.info(
"Conflict of key {} between the two maps: {} vs {}. Value in map: {}".format(
k, resized_map_1[k], resized_map_2[k], values[k]
)
)
elif resized_map_1[k] != fill_value:
raise NotImplementedError(
"First map has a key {} different from fill value {}".format(
k, fill_value
)
)
elif resized_map_2[k] != fill_value:
raise NotImplementedError(
"Second map has a key {} different from fill value {}".format(
k, fill_value
)
)
else:
values[k] = fill_value
else:
fitness_values = dict()
# resized_map_1 and resized_map_2 have the same keys
for k in resized_map_1.keys():
if k in bins_intersection:
logg.info(
"Conflict of keys between the two maps: {} vs {}".format(
resized_map_1[k], resized_map_2[k]
)
)
if resized_map_1[k] < resized_map_2[k]:
fitness_values[k] = resized_map_1[k]
else:
fitness_values[k] = resized_map_2[k]
if args.failure_probability:
value_1 = 1.0 if resized_map_1[k] < 0.0 else 0.0
value_2 = 1.0 if resized_map_2[k] < 0.0 else 0.0
else:
value_1 = 1.0 if resized_map_1[k] > 0.0 else 0.0
value_2 = 1.0 if resized_map_2[k] > 0.0 else 0.0
values[k] = (value_1 + value_2) / 2
elif resized_map_1[k] != fill_value:
fitness_values[k] = resized_map_1[k]
if args.failure_probability:
values[k] = 1.0 if resized_map_1[k] < 0.0 else 0.0
else:
values[k] = 1.0 if resized_map_1[k] > 0.0 else 0.0
elif resized_map_2[k] != fill_value:
fitness_values[k] = resized_map_2[k]
if args.failure_probability:
values[k] = 1.0 if resized_map_2[k] < 0.0 else 0.0
else:
values[k] = 1.0 if resized_map_2[k] > 0.0 else 0.0
else:
fitness_values[k] = fill_value
values[k] = fill_value
write_mapelites_report(
filepath=merged_heatmap_filepath,
iterations=0,
population=None,
fitness_values=fitness_values.values(),
individuals=individuals_in_population,
)
plot_map_of_elites(
data=fitness_values,
filepath=merged_heatmap_filepath,
iterations=0,
x_axis_label=feature_x_name,
y_axis_label=feature_y_name,
min_value_cbar=individuals_in_population[0].get_fitness().get_min_value(),
max_value_cbar=individuals_in_population[0].get_fitness().get_max_value(),
occupation_map=True,
)
plot_raw_map_of_elites(
data=fitness_values,
filepath=merged_heatmap_filepath,
iterations=0,
x_axis_label=feature_x_name,
y_axis_label=feature_y_name,
occupation_map=True,
)
plot_map_of_elites(
data=values,
filepath=merged_heatmap_filepath,
iterations=0,
x_axis_label=feature_x_name,
y_axis_label=feature_y_name,
min_value_cbar=0.0,
max_value_cbar=1.0,
occupation_map=False,
multiply_probabilities=args.multiply_probabilities,
failure_probability=args.failure_probability,
quality_metric=args.quality_metric,
quality_metric_merge=args.quality_metric_merge,
weighted_average_probabilities=args.weighted_average_probabilities,
)
plot_raw_map_of_elites(
data=values,
filepath=merged_heatmap_filepath,
iterations=0,
x_axis_label=feature_x_name,
y_axis_label=feature_y_name,
occupation_map=False,
multiply_probabilities=args.multiply_probabilities,
failure_probability=args.failure_probability,
quality_metric_merge=args.quality_metric_merge,
quality_metric=args.quality_metric,
weighted_average_probabilities=args.weighted_average_probabilities,
)
if args.execute:
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
if args.seed == -1:
args.seed = np.random.randint(2**30 - 1)
set_random_seed(seed=args.seed)
test_generator = make_test_generator(
generator_name=args.test_generator,
map_size=MAP_SIZE,
simulator_name=args.env_name,
agent_type=args.agent_type,
num_control_nodes=NUM_CONTROL_NODES,
max_angle=MAX_ANGLE,
num_spline_nodes=NUM_SAMPLED_POINTS,
)
env = make_env(
simulator_name=args.env_name,
seed=args.seed,
port=args.add_to_port,
test_generator=test_generator,
donkey_exe_path=args.donkey_exe_path,
udacity_exe_path=args.udacity_exe_path,
beamng_home=args.beamng_home_path,
beamng_user=args.beamng_user_path,
headless=args.headless,
beamng_autopilot=args.agent_type == "autopilot",
cyclegan_experiment_name=args.cyclegan_experiment_name,
gpu_ids=args.gpu_ids,
cyclegan_checkpoints_dir=args.cyclegan_checkpoints_dir,
cyclegan_epoch=args.cyclegan_epoch,
)
agent = make_agent(
env_name=args.env_name,
env=env,
model_path=args.model_path,
agent_type=args.agent_type,
predict_throttle=args.predict_throttle,
)
logg.info("Disabling Shapely logs")
for id in ["shapely.geos"]:
l = logging.getLogger(id)
l.setLevel(logging.CRITICAL)
l.disabled = True
mapelites = MapElites(
env=env,
env_name=args.env_name,
agent=agent,
filepath=args.folder,
min_angle=0,
max_angle=1, # to pass the assertion
mutation_extent=0,
population_size=0,
mock_evaluator=args.env_name == MOCK_SIM_NAME,
iteration_runtime=0,
test_generator=test_generator,
merged_heatmap=True,
feature_combination=args.feature_combination,
cyclegan_experiment_name=args.cyclegan_experiment_name,
gpu_ids=args.gpu_ids,
cyclegan_checkpoints_dir=args.cyclegan_checkpoints_dir,
cyclegan_epoch=args.cyclegan_epoch,
)
mapelites.execute_individuals_and_place_in_map(
individuals=individuals_in_population
)