-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathconv1d.ts
116 lines (106 loc) · 4.66 KB
/
conv1d.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {Tensor2D, Tensor3D, Tensor4D} from '../tensor';
import {convertToTensor} from '../tensor_util_env';
import {TensorLike} from '../types';
import * as util from '../util';
import {conv2d} from './conv2d';
import * as conv_util from './conv_util';
import {op} from './operation';
import {reshape} from './reshape';
/**
* Computes a 1D convolution over the input x.
*
* @param x The input tensor, of rank 3 or rank 2, of shape
* `[batch, width, inChannels]`. If rank 2, batch of 1 is assumed.
* @param filter The filter, rank 3, of shape
* `[filterWidth, inDepth, outDepth]`.
* @param stride The number of entries by which the filter is moved right at
* each step.
* @param pad The type of padding algorithm.
* - `same` and stride 1: output will be of same size as input,
* regardless of filter size.
* - `valid`: output will be smaller than input if filter is larger
* than 1x1.
* - For more info, see this guide:
* [https://www.tensorflow.org/api_docs/python/tf/nn/convolution](
* https://www.tensorflow.org/api_docs/python/tf/nn/convolution)
* @param dataFormat An optional string from "NWC", "NCW". Defaults to "NWC",
* the data is stored in the order of [batch, in_width, in_channels]. Only
* "NWC" is currently supported.
* @param dilation The dilation rate in which we sample input values in
* atrous convolution. Defaults to `1`. If it is greater than 1, then
* stride must be `1`.
* @param dimRoundingMode A string from: 'ceil', 'round', 'floor'. If none is
* provided, it will default to truncate.
*
* @doc {heading: 'Operations', subheading: 'Convolution'}
*/
function conv1d_<T extends Tensor2D|Tensor3D>(
x: T|TensorLike, filter: Tensor3D|TensorLike, stride: number,
pad: 'valid'|'same'|number|conv_util.ExplicitPadding,
dataFormat: 'NWC'|'NCW' = 'NWC', dilation = 1,
dimRoundingMode?: 'floor'|'round'|'ceil'): T {
const $x = convertToTensor(x, 'x', 'conv1d');
const $filter = convertToTensor(filter, 'filter', 'conv1d');
let x3D = $x as Tensor3D;
let reshapedTo3D = false;
if ($x.rank === 2) {
reshapedTo3D = true;
x3D = reshape($x, [1, $x.shape[0], $x.shape[1]]);
}
util.assert(
x3D.rank === 3,
() => `Error in conv1d: input must be rank 3, but got rank ${x3D.rank}.`);
util.assert(
$filter.rank === 3,
() => `Error in conv1d: filter must be rank 3, but got rank ` +
`${$filter.rank}.`);
conv_util.checkPadOnDimRoundingMode('conv1d', pad, dimRoundingMode);
util.assert(
x3D.shape[2] === $filter.shape[1],
() => `Error in conv1d: depth of input (${x3D.shape[2]}) must match ` +
`input depth for filter ${$filter.shape[1]}.`);
util.assert(
conv_util.eitherStridesOrDilationsAreOne(stride, dilation),
() => 'Error in conv1D: Either stride or dilation must be 1. ' +
`Got stride ${stride} and dilation '${dilation}'`);
util.assert(
conv_util.stridesOrDilationsArePositive(dilation),
() => 'Error in conv1D: Dilated rates should be larger than 0.');
util.assert(
conv_util.stridesOrDilationsArePositive(stride),
() => 'Error in conv1D: Stride should be larger than 0.');
util.assert(
dataFormat === 'NWC',
() => `Error in conv1d: got dataFormat of ${
dataFormat} but only NWC is currently supported.`);
const filter4D = reshape(
$filter, [1, $filter.shape[0], $filter.shape[1], $filter.shape[2]]);
const input4D = reshape(x3D, [x3D.shape[0], 1, x3D.shape[1], x3D.shape[2]]);
const strides: [number, number] = [1, stride];
const dilations: [number, number] = [1, dilation];
const conv2dDataFormat = 'NHWC';
const res = conv2d(
(input4D as Tensor4D), (filter4D as Tensor4D), strides, pad,
conv2dDataFormat, dilations, dimRoundingMode);
if (reshapedTo3D) {
return reshape(res, [res.shape[2], res.shape[3]]) as T;
}
return reshape(res, [res.shape[0], res.shape[2], res.shape[3]]) as T;
}
export const conv1d = /* @__PURE__ */ op({conv1d_});