-
Notifications
You must be signed in to change notification settings - Fork 613
/
Copy pathlamb.py
254 lines (222 loc) · 10.8 KB
/
lamb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Layer-wise Adaptive Moments (LAMB) optimizer.
See paper [Large Batch Optimization for Deep Learning: Training BERT in
76 minutes](https://arxiv.org/abs/1904.00962).
"""
import re
from typing import Optional, Union, Callable, List
from typeguard import typechecked
import tensorflow as tf
from tensorflow_addons.utils.types import FloatTensorLike
@tf.keras.utils.register_keras_serializable(package="Addons")
class LAMB(tf.keras.optimizers.Optimizer):
"""Optimizer that implements the Layer-wise Adaptive Moments (LAMB).
See paper [Large Batch Optimization for Deep Learning: Training BERT
in 76 minutes](https://arxiv.org/abs/1904.00962).
"""
@typechecked
def __init__(
self,
learning_rate: Union[FloatTensorLike, Callable] = 0.001,
beta_1: FloatTensorLike = 0.9,
beta_2: FloatTensorLike = 0.999,
epsilon: FloatTensorLike = 1e-6,
weight_decay_rate: FloatTensorLike = 0.0,
exclude_from_weight_decay: Optional[List[str]] = None,
exclude_from_layer_adaptation: Optional[List[str]] = None,
name: str = "LAMB",
**kwargs,
):
"""Construct a new LAMB optimizer.
Args:
learning_rate: A `Tensor` or a floating point value. or a schedule
that is a `tf.keras.optimizers.schedules.LearningRateSchedule`
The learning rate.
beta_1: A `float` value or a constant `float` tensor.
The exponential decay rate for the 1st moment estimates.
beta_2: A `float` value or a constant `float` tensor.
The exponential decay rate for the 2nd moment estimates.
epsilon: A small constant for numerical stability.
weight_decay_rate: weight decay rate.
exclude_from_weight_decay: List of regex patterns of
variables excluded from weight decay. Variables whose name
contain a substring matching the pattern will be excluded.
exclude_from_layer_adaptation: List of regex patterns of
variables excluded from layer adaptation. Variables whose name
contain a substring matching the pattern will be excluded.
name: Optional name for the operations created when applying
gradients. Defaults to "LAMB".
**kwargs: keyword arguments. Allowed to be {`clipnorm`,
`clipvalue`, `lr`, `decay`}. `clipnorm` is clip gradients by
norm; `clipvalue` is clip gradients by value, `decay` is
included for backward compatibility to allow time inverse
decay of learning rate. `lr` is included for backward
compatibility, recommended to use `learning_rate` instead.
"""
super().__init__(name, **kwargs)
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want to decay the weights in a manner that doesn't interact
# with the m/v parameters.
self._set_hyper("weight_decay_rate", weight_decay_rate)
self._set_hyper("learning_rate", kwargs.get("lr", learning_rate))
# This is learning rate decay for using keras learning rate schedule.
self._set_hyper("decay", self._initial_decay)
self._set_hyper("beta_1", beta_1)
self._set_hyper("beta_2", beta_2)
self.epsilon = epsilon or tf.backend_config.epsilon()
self.exclude_from_weight_decay = exclude_from_weight_decay
# exclude_from_layer_adaptation is set to exclude_from_weight_decay if
# the arg is None.
if exclude_from_layer_adaptation:
self.exclude_from_layer_adaptation = exclude_from_layer_adaptation
else:
self.exclude_from_layer_adaptation = exclude_from_weight_decay
def _create_slots(self, var_list):
# Create slots for the first and second moments.
# Separate for-loops to respect the ordering of slot variables from v1.
for var in var_list:
self.add_slot(var, "m")
for var in var_list:
self.add_slot(var, "v")
def _prepare_local(self, var_device, var_dtype, apply_state):
super()._prepare_local(var_device, var_dtype, apply_state)
local_step = tf.cast(self.iterations + 1, var_dtype)
beta_1_t = tf.identity(self._get_hyper("beta_1", var_dtype))
beta_2_t = tf.identity(self._get_hyper("beta_2", var_dtype))
weight_decay_rate = tf.identity(self._get_hyper("weight_decay_rate", var_dtype))
beta_1_power = tf.pow(beta_1_t, local_step)
beta_2_power = tf.pow(beta_2_t, local_step)
apply_state[(var_device, var_dtype)].update(
dict(
weight_decay_rate=weight_decay_rate,
epsilon=tf.convert_to_tensor(self.epsilon, var_dtype),
beta_1_t=beta_1_t,
beta_1_power=beta_1_power,
one_minus_beta_1_t=1 - beta_1_t,
beta_2_t=beta_2_t,
beta_2_power=beta_2_power,
one_minus_beta_2_t=1 - beta_2_t,
)
)
def _resource_apply_dense(self, grad, var, apply_state=None):
var_device, var_dtype = var.device, var.dtype.base_dtype
coefficients = (apply_state or {}).get(
(var_device, var_dtype)
) or self._fallback_apply_state(var_device, var_dtype)
# m_t = beta1 * m + (1 - beta1) * g_t
m = self.get_slot(var, "m")
m_scaled_g_values = grad * coefficients["one_minus_beta_1_t"]
m_t = m * coefficients["beta_1_t"] + m_scaled_g_values
m_t = m.assign(m_t, use_locking=self._use_locking)
# v_t = beta2 * v + (1 - beta2) * (g_t * g_t)
v = self.get_slot(var, "v")
v_scaled_g_values = (grad * grad) * coefficients["one_minus_beta_2_t"]
v_t = v * coefficients["beta_2_t"] + v_scaled_g_values
v_t = v.assign(v_t, use_locking=self._use_locking)
m_t_hat = m_t / (1.0 - coefficients["beta_1_power"])
v_t_hat = v_t / (1.0 - coefficients["beta_2_power"])
v_sqrt = tf.sqrt(v_t_hat)
update = m_t_hat / (v_sqrt + coefficients["epsilon"])
var_name = self._get_variable_name(var.name)
if self._do_use_weight_decay(var_name):
update += coefficients["weight_decay_rate"] * var
ratio = 1.0
if self._do_layer_adaptation(var_name):
w_norm = tf.norm(var, ord=2)
g_norm = tf.norm(update, ord=2)
ratio = tf.where(
tf.greater(w_norm, 0),
tf.where(tf.greater(g_norm, 0), (w_norm / g_norm), 1.0),
1.0,
)
var_update = var - ratio * coefficients["lr_t"] * update
return var.assign(var_update, use_locking=self._use_locking)
def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
var_device, var_dtype = var.device, var.dtype.base_dtype
coefficients = (apply_state or {}).get(
(var_device, var_dtype)
) or self._fallback_apply_state(var_device, var_dtype)
# m_t = beta1 * m + (1 - beta1) * g_t
m = self.get_slot(var, "m")
m_scaled_g_values = grad * coefficients["one_minus_beta_1_t"]
m_t = m.assign(m * coefficients["beta_1_t"], use_locking=self._use_locking)
with tf.control_dependencies([m_t]):
m_t = self._resource_scatter_add(m, indices, m_scaled_g_values)
# v_t = beta2 * v + (1 - beta2) * (g_t * g_t)
v = self.get_slot(var, "v")
v_scaled_g_values = (grad * grad) * coefficients["one_minus_beta_2_t"]
v_t = v.assign(v * coefficients["beta_2_t"], use_locking=self._use_locking)
with tf.control_dependencies([v_t]):
v_t = self._resource_scatter_add(v, indices, v_scaled_g_values)
m_t_hat = m_t / (1.0 - coefficients["beta_1_power"])
v_t_hat = v_t / (1.0 - coefficients["beta_2_power"])
v_sqrt = tf.sqrt(v_t_hat)
update = m_t_hat / (v_sqrt + coefficients["epsilon"])
var_name = self._get_variable_name(var.name)
if self._do_use_weight_decay(var_name):
update += coefficients["weight_decay_rate"] * var
ratio = 1.0
if self._do_layer_adaptation(var_name):
w_norm = tf.norm(var, ord=2)
g_norm = tf.norm(update, ord=2)
ratio = tf.where(
tf.greater(w_norm, 0),
tf.where(tf.greater(g_norm, 0), (w_norm / g_norm), 1.0),
1.0,
)
var_update = var.assign_sub(
ratio * coefficients["lr_t"] * update, use_locking=self._use_locking
)
return tf.group(*[var_update, m_t, v_t])
def get_config(self):
config = super().get_config()
config.update(
{
"learning_rate": self._serialize_hyperparameter("learning_rate"),
"weight_decay_rate": self._serialize_hyperparameter(
"weight_decay_rate"
),
"decay": self._serialize_hyperparameter("decay"),
"beta_1": self._serialize_hyperparameter("beta_1"),
"beta_2": self._serialize_hyperparameter("beta_2"),
"epsilon": self.epsilon,
}
)
return config
def _do_use_weight_decay(self, param_name):
"""Whether to use L2 weight decay for `param_name`."""
if self.exclude_from_weight_decay:
for r in self.exclude_from_weight_decay:
if re.search(r, param_name) is not None:
return False
return True
def _do_layer_adaptation(self, param_name):
"""Whether to do layer-wise learning rate adaptation for
`param_name`."""
if self.exclude_from_layer_adaptation:
for r in self.exclude_from_layer_adaptation:
if re.search(r, param_name) is not None:
return False
return True
def _get_variable_name(self, param_name):
"""Get the variable name from the tensor name."""
m = re.match("^(.*):\\d+$", param_name)
if m is not None:
param_name = m.group(1)
return param_name