-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript_prepare.py
160 lines (152 loc) · 5.96 KB
/
script_prepare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# script for preparing necessary data for single tasks
import os
os.environ["PYTHONWARNINGS"] = "ignore"
import json
import time
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import pandas as pd
from utils.data import Dataset, create_adult_dataset, create_compas_dataset, create_titanic_dataset, create_communities_dataset, create_german_dataset, create_bank_dataset
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import LinearSVC , SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neural_network import MLPClassifier
from imblearn.over_sampling import SMOTE
# define enum
target_metrics = {
"acc": 0,
"f1": 1
}
# prepare datasets for parameter searching
def prepare_datasets():
results = {
"adult": None,
"compas": None,
"titanic": None,
"communities": None,
"german": None,
"bank": None
}
# compas dataset
c_data = create_compas_dataset()
tmp_concat = pd.concat([c_data.X, pd.DataFrame(c_data.y, columns=["_TARGET_"])], axis=1)
tmp_concat.dropna(inplace=True)
tmp_concat.reset_index(drop=True, inplace=True)
c_data.X = tmp_concat.drop(columns=["_TARGET_"]).copy()
c_data.y = tmp_concat["_TARGET_"].copy().to_numpy().ravel()
results["compas"] = c_data
# adult dataset
a_data = create_adult_dataset()
tmp_concat = pd.concat([a_data.X, pd.DataFrame(a_data.y, columns=["_TARGET_"])], axis=1)
tmp_concat.dropna(inplace=True)
tmp_concat.reset_index(drop=True, inplace=True)
a_data.X = tmp_concat.drop(columns=["_TARGET_"]).copy()
a_data.y = tmp_concat["_TARGET_"].copy().to_numpy().ravel()
results["adult"] = a_data
# titanic dataset
t_data = create_titanic_dataset()
tmp_concat = pd.concat([t_data.X, pd.DataFrame(t_data.y, columns=["_TARGET_"])], axis=1)
tmp_concat.dropna(inplace=True)
tmp_concat.reset_index(drop=True, inplace=True)
t_data.X = tmp_concat.drop(columns=["_TARGET_"]).copy()
t_data.y = tmp_concat["_TARGET_"].copy().to_numpy().ravel()
results["titanic"] = t_data
# communities dataset
cm_data = create_communities_dataset()
tmp_concat = pd.concat([cm_data.X, pd.DataFrame(cm_data.y, columns=["_TARGET_"])], axis=1)
tmp_concat.dropna(inplace=True)
tmp_concat.reset_index(drop=True, inplace=True)
cm_data.X = tmp_concat.drop(columns=["_TARGET_"]).copy()
cm_data.y = tmp_concat["_TARGET_"].copy().to_numpy().ravel()
results["communities"] = cm_data
# german dataset
g_data = create_german_dataset()
results["german"] = g_data
# bank dataset
b_data = create_bank_dataset()
results["bank"] = b_data
return results
# run parameter searching and save data
def param_search(datasets, metrics, json_file=None):
params = {
"KNN": {
"n_neighbors": [2, 5, 10, 50, 100],
"leaf_size": [5, 10, 30, 50, 100],
},
"LinearSVC": {
"tol": [1e-6, 1e-5, 1e-4, 1e-3, 1e-2],
"C": [0.01, 0.1, 1, 10],
"max_iter": [1000, 5000, 10000],
},
"SVC": {
"tol": [1e-5, 1e-4, 1e-3, 1e-2, 1e-1],
"C": [0.01, 0.1, 1, 10, 100],
"max_iter": [1000, 5000, 10000, -1],
},
"Forest": {
"n_estimators": [50, 100, 200, 500],
"max_depth": [None, 10, 50, 100, 200],
"min_samples_leaf": [1, 5, 10, 50],
},
"LogReg": {
"tol": [1e-6, 1e-5, 1e-4, 1e-3, 1e-2],
"C": [1e-2, 1e-1, 1, 1e1, 1e2],
"max_iter": [100, 500, 1000, 5000],
},
"Tree": {
"max_depth": [None, 10, 50, 100, 200],
"max_leaf_nodes": [None, 10, 100, 1000],
"min_samples_leaf": [1, 5, 10, 50],
},
"MLP": {
"hidden_layer_sizes": [(10,), (100,), (500,)],
"alpha": [1e-5, 1e-4, 1e-3],
"learning_rate_init": [1e-4, 1e-3, 1e-2],
"max_iter": [200, 500, 1000],
},
}
classifiers = {
"KNN": KNeighborsClassifier(),
"LinearSVC": LinearSVC(dual=False),
"SVC": SVC(),
"Forest": RandomForestClassifier(),
"LogReg": LogisticRegression(),
"Tree": DecisionTreeClassifier(),
"MLP": MLPClassifier(),
}
results = {}
smote = SMOTE()
scaler = StandardScaler()
if metrics == target_metrics["acc"]: scoring = "accuracy"
elif metrics == target_metrics["f1"]: scoring = "f1"
else: raise ValueError("metrics is not the correct value")
print("Target metric: {}".format(scoring))
for d_name, d_value in datasets.items():
results[d_name] = {}
print("Now running on {} dataset".format(d_name))
for clf in classifiers.keys():
model = classifiers[clf]
d_value.preprocess()
X = d_value.X_encoded.drop(columns=d_value.protected_features).copy().to_numpy()
y = d_value.y.copy()
X_res, y_res = smote.fit_resample(X, y)
X_scaled = scaler.fit_transform(X_res)
print("Parameter searching for {}".format(model.__class__.__name__))
search = GridSearchCV(model, params[clf], n_jobs=-1, cv=10, scoring=scoring)
start_time = time.time()
search.fit(X_scaled, y_res)
print("Search finished in {:.2f}min, best score = {}".format((time.time() - start_time) / 60, search.best_score_))
results[d_name][clf] = search.best_params_
if json_file:
with open(json_file, "w") as outFile:
json.dump(results, outFile)
return results
if __name__=="__main__":
datasets = prepare_datasets()
param_search(datasets, metrics=target_metrics["acc"], json_file="params_acc.json")
# param_search(datasets, metrics=target_metrics["f1"], json_file="params_f1.json")