-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathCurveFitting.java
125 lines (110 loc) · 3.94 KB
/
CurveFitting.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
public class CurveFitting {
///<summary>
///最小二乘法拟合二元多次曲线
///例如y=ax+b
///其中MultiLine将返回a,b两个参数。
///a对应MultiLine[1]
///b对应MultiLine[0]
///</summary>
///<param name="arrX">已知点的x坐标集合</param>
///<param name="arrY">已知点的y坐标集合</param>
///<param name="length">已知点的个数</param>
///<param name="dimension">方程的最高次数</param>
public static double[] MultiLine(double[] arrX, double[] arrY, int length, int dimension) {
int n = dimension + 1; //dimension次方程需要求 dimension+1个 系数
double[][] Guass = new double[n][n + 1];
for (int i = 0; i < n; i++){ //求矩阵公式①
int j;
for (j = 0; j < n; j++){
Guass[i][j] = SumArr(arrX, j + i, length);//公式①等号左边第一个矩阵,即Ax=b中的A
}
Guass[i][j] = SumArr(arrX, i, arrY, 1, length);//公式①等号右边的矩阵,即Ax=b中的b
}
return ComputGauss(Guass, n);//高斯消元法
}
//求数组的元素的n次方的和,即矩阵A中的元素
private static double SumArr(double[] arr, int n, int length) {
double s = 0;
for (int i = 0; i < length; i++){
if (arr[i] != 0 || n != 0){
s = s + Math.pow(arr[i], n);
}
else{
s = s + 1;
}
}
return s;
}
//求数组的元素的n次方的和,即矩阵b中的元素
private static double SumArr(double[] arr1, int n1, double[] arr2, int n2, int length) {
double s = 0;
for (int i = 0; i < length; i++)
{
if ((arr1[i] != 0 || n1 != 0) && (arr2[i] != 0 || n2 != 0))
s = s + Math.pow(arr1[i], n1) * Math.pow(arr2[i], n2);
else
s = s + 1;
}
return s;
}
//高斯消元法解线性方程组
private static double[] ComputGauss(double[][] Guass, int n) {
int i, j;
int k, m;
double temp;
double max;
double s;
double[] x = new double[n];
for (i = 0; i < n; i++) {
x[i] = 0.0;//初始化
}
for (j = 0; j < n; j++) {
max = 0;
k = j;
// 从第i行开始,找出第j列中的最大值(i、j值应保持不变)
for (i = j; i < n; i++) {
if (Math.abs(Guass[i][j]) > max){
max = Guass[i][j];// 使用交换法找出最大值(绝对值最大)
k = i;
}
}
if (k != j) {
//将第j行与找到的最大值所在行做交换,保持i值不变(j值记录了本次操作的起始行)
for (m = j; m < n + 1; m++) {
temp = Guass[j][m];
Guass[j][m] = Guass[k][m];
Guass[k][m] = temp;
}
}
if (max == 0) {
// "此线性方程为奇异线性方程"
return x;
}
// 第m列中,第(j+1)行以下(包括第(j+1)行)所有元素都减去Guass[j][m] * s / (Guass[j][j])
//直到第m列的i+1行以後元素均为零
for (i = j + 1; i < n; i++) {
s = Guass[i][j];
for (m = j; m < n + 1; m++) {
Guass[i][m] = Guass[i][m] - Guass[j][m] * s / (Guass[j][j]);
}
}
}//结束for (j=0;j<n;j++)
//回代过程(见公式4.1.5)
for (i = n - 1; i >= 0; i--) {
s = 0;
for (j = i + 1; j < n; j++) {
s = s + Guass[i][j] * x[j];
}
x[i] = (Guass[i][n] - s) / Guass[i][i];
}
return x;
}//返回值是函数的系数
public static void main(String[] args) {
double[] x = {0, 1, 2, 3, 4, 5, 6, 7};
double[] y = {0, 1, 4, 9, 16, 25, 36, 49};
double[] a = MultiLine(x, y, 8, 2);
for(int i =0; i <a.length;i++){
System.out.println(a[i]);
}
}
}