-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcrypto_test.go
287 lines (243 loc) · 8.94 KB
/
crypto_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
package tomtp
import (
"bytes"
"crypto/ecdh"
"crypto/rand"
"encoding/hex"
"github.com/stretchr/testify/assert"
"testing"
)
func TestDoubleEncryptDecrypt(t *testing.T) {
testCases := []struct {
name string
sn uint64
data []byte
additionalData []byte
}{
{"Short Data", 1234567890, randomBytes(10), []byte("AAD")},
{"Long Data", 987654321, randomBytes(100), randomBytes(100)},
{"Long Data/Short", 1, randomBytes(100), []byte("")},
{"Min Data", 2, randomBytes(9), []byte("Only AAD")},
{"Min Data 2", 2, randomBytes(9), []byte("")},
{"Empty Data", 1111111111, []byte{}, []byte("Only AAD")},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
sharedSecret := make([]byte, 32)
if _, err := rand.Read(sharedSecret); err != nil {
t.Fatalf("Failed to generate shared secret: %v", err)
}
buf, err := chainedEncrypt(tc.sn, true, sharedSecret, tc.additionalData, tc.data)
//too short
if len(tc.data) < MinPayloadSize {
assert.NotNil(t, err)
return
}
assert.Nil(t, err)
if len(buf) == 0 {
t.Fatalf("No encrypted data written")
}
t.Logf("Encrypted data: %s", hex.EncodeToString(buf))
decryptedSn, decryptedData, err := chainedDecrypt(false, sharedSecret, buf[0:len(tc.additionalData)], buf[len(tc.additionalData):])
assert.Nil(t, err)
assert.Equal(t, tc.sn, decryptedSn)
assert.Equal(t, tc.data, decryptedData)
})
}
}
func TestSecretKey(t *testing.T) {
bobPrvKeyId, err := ecdh.X25519().GenerateKey(rand.Reader)
assert.Nil(t, err)
bobPubKeyId := bobPrvKeyId.PublicKey()
alicePrvKeyEp, err := ecdh.X25519().GenerateKey(rand.Reader)
assert.Nil(t, err)
alicePubKeyEp := alicePrvKeyEp.PublicKey()
secret1, err := bobPrvKeyId.ECDH(alicePubKeyEp)
assert.Nil(t, err)
secret2, err := alicePrvKeyEp.ECDH(bobPubKeyId)
assert.Nil(t, err)
assert.Equal(t, secret1, secret2)
}
func TestEncodeDecodeInitS0(t *testing.T) {
testCases := []struct {
name string
payload []byte
expected []byte
}{
{"Short Payload", []byte("short1234"), nil},
{"Long Payload", randomBytes(100), nil},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
alicePrvKeyId, alicePrvKeyEp := generateTwoKeys(t)
alicePrvKeyEpRollover := generateKeys(t)
bobPrvKeyId, _ := generateTwoKeys(t)
buffer, err := EncodeWriteInitS0(bobPrvKeyId.PublicKey(), alicePrvKeyId.PublicKey(), alicePrvKeyEp, alicePrvKeyEpRollover, tc.payload)
assert.Nil(t, err)
_, _, _, m, err := DecodeInitS0(buffer, bobPrvKeyId, alicePrvKeyEp)
assert.Nil(t, err)
assert.Equal(t, tc.payload, m.PayloadRaw)
})
}
}
func TestEncodeDecodeInitR0(t *testing.T) {
testCases := []struct {
name string
payload []byte
expected []byte
}{
{"Short Payload", []byte("short1234"), nil},
{"Long Payload", randomBytes(100), nil},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
alicePrvKeyId, alicePrvKeyEp := generateTwoKeys(t)
alicePrvKeyEpRollover := generateKeys(t)
bobPrvKeyId, bobPrvKeyEp := generateTwoKeys(t)
bobPrvKeyEpRollover := generateKeys(t)
//Alice -> Bob, Alice encodes
bufferInit, err := EncodeWriteInitS0(bobPrvKeyId.PublicKey(), alicePrvKeyId.PublicKey(), alicePrvKeyEp, alicePrvKeyEpRollover, tc.payload)
assert.Nil(t, err)
//Bob decodes message from Alice
_, _, _, m, err := DecodeInitS0(bufferInit, bobPrvKeyId, bobPrvKeyEp)
assert.Nil(t, err)
//Bob -> Alice
bufferInitReply, err := EncodeWriteInitR0(alicePrvKeyId.PublicKey(), bobPrvKeyId.PublicKey(), alicePrvKeyEp.PublicKey(), bobPrvKeyEp, bobPrvKeyEpRollover, tc.payload)
assert.Nil(t, err)
//Alice decodes message from Bob
_, _, m2, err := DecodeInitR0(bufferInitReply, alicePrvKeyEp)
assert.Nil(t, err)
assert.Equal(t, tc.payload, m2.PayloadRaw)
assert.Equal(t, m.SharedSecret, m2.SharedSecret)
})
}
}
func TestEncodeDecodeData0AndData(t *testing.T) {
testCases := []struct {
name string
payload []byte
expected []byte
}{
{"Short Payload", []byte("short1234"), nil},
{"Long Payload", randomBytes(100), nil},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
alicePrvKeyId, _ := generateTwoKeys(t)
alicePrvKeyEpRollover := generateKeys(t)
bobPrvKeyId, bobPrvKeyEp := generateTwoKeys(t)
// Alice -> Bob
bufferData0, err := EncodeWriteData0(
bobPrvKeyId.PublicKey(),
alicePrvKeyId.PublicKey(),
true,
bobPrvKeyEp.PublicKey(),
alicePrvKeyEpRollover,
tc.payload)
assert.Nil(t, err)
// Bob decodes message from Alice
_, m3, err := DecodeData0(bufferData0, bobPrvKeyEp)
assert.Nil(t, err)
assert.Equal(t, tc.payload, m3.PayloadRaw)
// Then test regular DATA messages
sharedSecret := m3.SharedSecret
bufferData, err := EncodeWriteData(bobPrvKeyId.PublicKey(), alicePrvKeyId.PublicKey(), true, sharedSecret, 1, tc.payload)
assert.Nil(t, err)
m4, err := DecodeData(bufferData, false, sharedSecret)
assert.Nil(t, err)
assert.Equal(t, tc.payload, m4.PayloadRaw)
bufferData2, err := EncodeWriteData(alicePrvKeyId.PublicKey(), bobPrvKeyId.PublicKey(), false, sharedSecret, 2, tc.payload)
assert.Nil(t, err)
m5, err := DecodeData(bufferData2, true, sharedSecret)
assert.Nil(t, err)
assert.Equal(t, tc.payload, m5.PayloadRaw)
})
}
}
func FuzzEncodeDecodeCrypto(f *testing.F) {
// Add seed corpus with various sizes including invalid ones
seeds := [][]byte{
[]byte("initial data for fuzzer"),
[]byte("1234567"), // 7 bytes - should fail
[]byte("12345678"), // 8 bytes - minimum valid size
[]byte("123456789"), // 9 bytes - valid
make([]byte, 7), // 7 zero bytes - should fail
make([]byte, 8), // 8 zero bytes - minimum valid size
}
for _, seed := range seeds {
f.Add(seed)
}
f.Fuzz(func(t *testing.T, data []byte) {
// First verify data size requirements
if len(data) < MinPayloadSize {
// For data less than minimum size, verify that we get appropriate error
alicePrvKeyId, alicePrvKeyEp := generateTwoKeys(t)
alicePrvKeyEpRollover := generateKeys(t)
bobPrvKeyId, _ := generateTwoKeys(t)
// Try InitSnd - should fail
_, err := EncodeWriteInitS0(bobPrvKeyId.PublicKey(), alicePrvKeyId.PublicKey(), alicePrvKeyEp, alicePrvKeyEpRollover, data)
assert.Error(t, err, "Expected error for data size %d < %d", len(data), MinPayloadSize)
assert.Equal(t, "packet data too short", err.Error(), "Wrong error message for small data")
return
}
// For valid sizes, proceed with full testing
alicePrvKeyId, alicePrvKeyEp := generateTwoKeys(t)
alicePrvKeyEpRollover := generateKeys(t)
bobPrvKeyId, bobPrvKeyEp := generateTwoKeys(t)
bobPrvKeyEpRollover := generateKeys(t)
// Alice -> Bob
bufferInit, err := EncodeWriteInitS0(bobPrvKeyId.PublicKey(), alicePrvKeyId.PublicKey(), alicePrvKeyEp, alicePrvKeyEpRollover, data)
assert.NoError(t, err)
// Bob decodes
_, _, _, initDecoded, err := DecodeInitS0(bufferInit, bobPrvKeyId, alicePrvKeyEp)
assert.NoError(t, err)
assert.True(t, bytes.Equal(initDecoded.PayloadRaw, data),
"InitSnd payload mismatch: got %v, want %v", initDecoded.PayloadRaw, data)
// Bob -> Alice
bufferInitReply, err := EncodeWriteInitR0(alicePrvKeyId.PublicKey(), bobPrvKeyId.PublicKey(), alicePrvKeyEp.PublicKey(), bobPrvKeyEp, bobPrvKeyEpRollover, data)
assert.NoError(t, err)
// Alice decodes
_, _, decodedInitReply, err := DecodeInitR0(bufferInitReply, alicePrvKeyEp)
assert.NoError(t, err)
assert.True(t, bytes.Equal(decodedInitReply.PayloadRaw, data),
"InitRcv payload mismatch: got %v, want %v", decodedInitReply.PayloadRaw, data)
// Alice -> Bob
bufferData0, err := EncodeWriteData0(bobPrvKeyId.PublicKey(), alicePrvKeyId.PublicKey(), true, bobPrvKeyEp.PublicKey(), alicePrvKeyEpRollover, data)
assert.NoError(t, err)
// Bob decodes rollover
_, decodedData0Msg, err := DecodeData0(bufferData0, bobPrvKeyEp)
assert.NoError(t, err)
assert.True(t, bytes.Equal(decodedData0Msg.PayloadRaw, data),
"Data0 message payload mismatch: got %v, want %v", decodedData0Msg.PayloadRaw, data)
// Alice -> Bob
sharedSecret := decodedData0Msg.SharedSecret
bufferData, err := EncodeWriteData(bobPrvKeyId.PublicKey(), alicePrvKeyId.PublicKey(), true, sharedSecret, 1, data)
assert.NoError(t, err)
// Bob decodes
decodedDataMsg, err := DecodeData(bufferData, false, sharedSecret)
assert.NoError(t, err)
assert.True(t, bytes.Equal(decodedDataMsg.PayloadRaw, data),
"Data message payload mismatch: got %v, want %v", decodedDataMsg.PayloadRaw, data)
})
}
// Helper function to generate random data
func randomBytes(n int) []byte {
b := make([]byte, n)
_, err := rand.Read(b)
if err != nil {
panic(err)
}
return b
}
func generateKeys(t *testing.T) *ecdh.PrivateKey {
privKey, err := ecdh.X25519().GenerateKey(rand.Reader)
if err != nil {
t.Fatalf("Failed to generate key: %v", err)
}
return privKey
}
func generateTwoKeys(t *testing.T) (*ecdh.PrivateKey, *ecdh.PrivateKey) {
prvKeyId := generateKeys(t)
prvKeyEp := generateKeys(t)
return prvKeyId, prvKeyEp
}