-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnewMethod.py
137 lines (117 loc) Β· 4.07 KB
/
newMethod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import numpy
import random,math
def hadamardProduct_trace(X,Y):
tr=numpy.dot(numpy.hstack(X),numpy.hstack(Y))
return(tr)
def coefficientPolyCreate(trace_vector):
coeff= [-trace_vector[0]]
for i in range(1,N):
c_new= trace_vector[i]
for j in range(i):
temp= coeff[j]*trace_vector[i-j-1]
c_new += temp
frac= -1/(i+1)
c_new *= frac
coeff.append(c_new)
c0=1
coeff=[c0]+coeff
# coeff= [c0,c1,c2,...cn]
return(coeff)
def iden_matrix(n):
m=[[0 for x in range(n)] for y in range(n)]
for i in range(0,n):
m[i][i] = 1
return m
def trace(M):
t=numpy.trace(M)
return(t)
def TraceCalculation(Power_vector_Half):
traceVec=[]
tempVec=[]
n= int(N)
for i in range(1,len(Power_vector_Half)):
traceVec.append(trace(Power_vector_Half[i]))
if (n%2 ==0):
for i in range(n//4 + 1, int(n/2) +1):
traceVec.append(hadamardProduct_trace(Power_vector_Half[i],Power_vector_Half[i-1]))
traceVec.append(hadamardProduct_trace(Power_vector_Half[i],Power_vector_Half[i]))
else:
for i in range(n//4 + 1, n//2 +2):
if (i> n//4 + 1):
traceVec.append(hadamardProduct_trace(Power_vector_Half[i],Power_vector_Half[i-1]))
if (n> 2*i and 2*i> n//2 +1):
traceVec.append(hadamardProduct_trace(Power_vector_Half[i],Power_vector_Half[i]))
tempVec.sort()
# traceVec= [traceA, traceA^2..., traceA^n]
traceVec+=tempVec
"""
pow2=numpy.matmul(Power_vector_Half[1], Power_vector_Half[1])
pow3=numpy.matmul(pow2, Power_vector_Half[1])
pow4=numpy.matmul(pow3, Power_vector_Half[1])
pow5=numpy.matmul(pow4, Power_vector_Half[1])
pow6=numpy.matmul(pow5 , Power_vector_Half[1])
pow7=numpy.matmul(pow6, Power_vector_Half[1])
print([numpy.trace(Power_vector_Half[1]),numpy.trace(pow2),numpy.trace(pow3),numpy.trace(pow4),numpy.trace(pow5),numpy.trace(pow6),numpy.trace(pow7)][:N])
"""
return(traceVec)
def Power_vector_HalfCalculation(M):
Power_vector_Half= [M]
for i in range(1,math.ceil(len(M)/2)):
Power_vector_Half.append(numpy.matmul(M,Power_vector_Half[i-1]))
# Power_vector_Half= [ I, M, M^2, M^3,....M^[(n+1)/2] ]
Power_vector_Half= [iden_matrix(N)]+ Power_vector_Half
return(Power_vector_Half)
def inverseMatrix(M):
Power_vector_Half= Power_vector_HalfCalculation(M)
trace_vector= TraceCalculation(Power_vector_Half)
coefficientPoly= coefficientPolyCreate(trace_vector)
M_inverse=[]
print(coefficientPoly)
deteminant= coefficientPoly.pop()
n= len(coefficientPoly)
print()
for i in range(n-1, -1, -1):
# x= [0]*n-i-1 + [1] + [0]*i
powerMatrix_X=[]
for j in range(len(Power_vector_Half)):
powerMatrix_X.append(Power_vector_Half[j][i])
# multiplies x with powers I, A, A^2 ... A^( [n/2 + 0.5] )
for j in range(len(Power_vector_Half),n):
# to avoid budget of only one matrix to go down, we randomly choose vector.
# differece will be noticable when matrix is large, here n is 4, so wont matter much here
#print(i,j)
partition_1= random.randint(n//4+1,n//2)
partition_2= j - partition_1
#print(i,j, partition_1, partition_2)
muliplier1= Power_vector_Half[partition_2][:i+1]
muliplier2= powerMatrix_X[partition_2]
powerMatrix_X.append( numpy.matmul(muliplier1,muliplier2) )
# powerMatrix_X is powerMatrix multiplied by x vector
for j in range(len(powerMatrix_X)):
for l in range(len(powerMatrix_X[j])):
powerMatrix_X[j][l]=powerMatrix_X[j][l]*float(coefficientPoly[n-1-j])
print()
tInverseRow=[list(tup) for tup in zip(*powerMatrix_X)]
InverseRow=[]
print(i,tInverseRow)
for x in tInverseRow:
InverseRow.append(sum(x))
print(InverseRow)
M_inverse.append(InverseRow)
print(deteminant)
for x in range(len(M_inverse)):
for y in range(len(M_inverse[x])):
M_inverse[x][y]=M_inverse[x][y]/(-deteminant)
M_inverse.reverse()
for row in M_inverse:
print(row)
#N= int(inumpyut("Enter dimensions: "))
N=5
b = numpy.random.random_integers(0,10,size=(N,N))
X = (b + b.T)/2
print(X)
print(numpy.linalg.det(X))
print(numpy.linalg.inv(X))
print()
print("\nMain program: \n")
inverseMatrix(X)