-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain_cv.py
147 lines (123 loc) · 5.8 KB
/
train_cv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8
#
# Copyright © 2017 Takuma Yagi <[email protected]>
#
# Distributed under terms of the MIT license.
import os
import json
import time
import joblib
import numpy as np
import chainer
from chainer import Variable, optimizers, serializers, iterators, cuda
from chainer.dataset import convert
from utils.generic import get_args, get_model, write_prediction
from utils.dataset import SceneDatasetCV
from utils.summary_logger import SummaryLogger
from utils.scheduler import AdamScheduler
from utils.evaluation import Evaluator
from mllogger import MLLogger
logger = MLLogger(init=False)
if __name__ == "__main__":
"""
Training with Cross-Validation
"""
args = get_args()
np.random.seed(args.seed)
start = time.time()
logger.initialize(args.root_dir)
logger.info(vars(args))
save_dir = logger.get_savedir()
logger.info("Written to {}".format(save_dir))
summary = SummaryLogger(args, logger, os.path.join(args.root_dir, "summary.csv"))
summary.update("finished", 0)
data_dir = "data"
data = joblib.load(args.in_data)
traj_len = data["trajectories"].shape[1]
# Load training data
train_splits = list(filter(lambda x: x != args.eval_split, range(args.nb_splits)))
valid_split = args.eval_split + args.nb_splits
train_dataset = SceneDatasetCV(data, args.input_len, args.offset_len, args.pred_len,
args.width, args.height, data_dir, train_splits, args.nb_train,
True, "scale" in args.model, args.ego_type)
logger.info(train_dataset.X.shape)
valid_dataset = SceneDatasetCV(data, args.input_len, args.offset_len, args.pred_len,
args.width, args.height, data_dir, valid_split, -1,
False, "scale" in args.model, args.ego_type)
logger.info(valid_dataset.X.shape)
# X: input, Y: output, poses, egomotions
data_idxs = [0, 1, 2, 7]
if data_idxs is None:
logger.info("Invalid argument: model={}".format(args.model))
exit(1)
model = get_model(args)
optimizer = optimizers.Adam()
optimizer.setup(model)
optimizer.add_hook(chainer.optimizer.WeightDecay(1e-4))
scheduler = AdamScheduler(optimizer, 0.5, args.lr_step_list, 0)
train_iterator = iterators.MultithreadIterator(train_dataset, args.batch_size, n_threads=args.nb_jobs)
train_eval = Evaluator("train", args)
valid_iterator = iterators.MultithreadIterator(valid_dataset, args.batch_size, False, False, n_threads=args.nb_jobs)
valid_eval = Evaluator("valid", args)
logger.info("Training...")
train_eval.reset()
st = time.time()
# Training loop
for iter_cnt, batch in enumerate(train_iterator):
if iter_cnt == args.nb_iters:
break
chainer.config.train = True
chainer.config.enable_backprop = True
batch_array = [convert.concat_examples([x[idx] for x in batch], args.gpu) for idx in data_idxs]
model.cleargrads()
loss, pred_y, _ = model(tuple(map(Variable, batch_array)))
loss.backward()
loss.unchain_backward()
optimizer.update()
scheduler.update()
train_eval.update(cuda.to_cpu(loss.data), pred_y, batch)
# Validation & report
if (iter_cnt + 1) % args.iter_snapshot == 0:
logger.info("Validation...")
if args.save_model:
serializers.save_npz(os.path.join(save_dir, "model_{}.npz".format(iter_cnt + 1)), model)
chainer.config.train = False
chainer.config.enable_backprop = False
model.cleargrads()
prediction_dict = {
"arguments": vars(args),
"predictions": {}
}
valid_iterator.reset()
valid_eval.reset()
for itr, batch in enumerate(valid_iterator):
batch_array = [convert.concat_examples([x[idx] for x in batch], args.gpu) for idx in data_idxs]
loss, pred_y, _ = model.predict(tuple(map(Variable, batch_array)))
valid_eval.update(cuda.to_cpu(loss.data), pred_y, batch)
write_prediction(prediction_dict["predictions"], batch, pred_y)
message_str = "Iter {}: train loss {} / ADE {} / FDE {}, valid loss {} / " \
"ADE {} / FDE {}, elapsed time: {} (s)"
logger.info(message_str.format(
iter_cnt + 1, train_eval("loss"), train_eval("ade"), train_eval("fde"),
valid_eval("loss"), valid_eval("ade"), valid_eval("fde"), time.time()-st))
train_eval.update_summary(summary, iter_cnt, ["loss", "ade", "fde"])
valid_eval.update_summary(summary, iter_cnt, ["loss", "ade", "fde"])
predictions = prediction_dict["predictions"]
pred_list = [[pred for vk, v_dict in sorted(predictions.items())
for fk, f_dict in sorted(v_dict.items())
for pk, pred in sorted(f_dict.items()) if pred[8] == idx] for idx in range(4)]
error_rates = [np.mean([pred[7] for pred in preds]) for preds in pred_list]
logger.info("Towards {} / Away {} / Across {} / Other {}".format(*error_rates))
prediction_path = os.path.join(save_dir, "prediction.json")
with open(prediction_path, "w") as f:
json.dump(prediction_dict, f)
st = time.time()
train_eval.reset()
elif (iter_cnt + 1) % args.iter_display == 0:
msg = "Iter {}: train loss {} / ADE {} / FDE {}"
logger.info(msg.format(iter_cnt + 1, train_eval("loss"), train_eval("ade"), train_eval("fde")))
summary.update("finished", 1)
summary.write()
logger.info("Elapsed time: {} (s), Saved at {}".format(time.time()-start, save_dir))