-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfinetune_lora_dpo.py
417 lines (358 loc) · 13.2 KB
/
finetune_lora_dpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
# Copyright 2024 The AMP Team
# Inspired by LLaVA-RLHF, LLaVA-V1.5, and TRL
import argparse
from dataclasses import dataclass, field
import json
import os
import sys
import bitsandbytes as bnb
from typing import Optional, List
import logging
import torch
import torch.distributed as dist
import accelerate
from accelerate import DistributedDataParallelKwargs
import transformers
from transformers import set_seed
from peft import LoraConfig
from models.dpo_model import get_accelerate_model, print_trainable_parameters, make_models
try:
from transformers import LlamaTokenizerFast as LlamaTokenizer
print("Using fast tokenizer")
except:
from transformers import LlamaTokenizer
print("Using slow tokenizer")
from transformers import AutoTokenizer, AutoModelForCausalLM
from data_utils.data_utils_dpo import make_rl_data_module
from lora_utils import (
get_last_checkpoint,
DEFAULT_PAD_TOKEN,
)
from models.dpo_trainer import (
DPOTrainer,
)
from models.dpo_trainer import AlpacaAccelerator
from llava import conversation as conversation_lib
from llava.model import *
from llava.constants import (
IGNORE_INDEX,
IMAGE_TOKEN_INDEX,
DEFAULT_IMAGE_TOKEN,
DEFAULT_IM_START_TOKEN,
DEFAULT_IM_END_TOKEN,
)
torch.backends.cuda.matmul.allow_tf32 = True
logger = logging.getLogger(__name__)
def find_all_linear_names(
args,
model: torch.nn.Module,
):
cls = (
bnb.nn.Linear4bit
if args.bits == 4
else (bnb.nn.Linear8bitLt if args.bits == 8 else torch.nn.Linear)
)
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split(".")
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if "lm_head" in lora_module_names: # needed for 16-bit
lora_module_names.remove("lm_head")
return list(lora_module_names)
class DisableLogger:
def __enter__(self):
logging.disable(logging.CRITICAL)
def __exit__(self, exit_type, exit_value, exit_traceback):
logging.disable(logging.NOTSET)
@dataclass
class ModelArguments:
trust_remote_code: Optional[bool] = field(
default=False,
metadata={
"help": "Enable unpickling of arbitrary code in AutoModelForCausalLM#from_pretrained."
},
)
base_model_name: Optional[str] = field(default="EleutherAI/pythia-12b")
# from LLaVA
version: Optional[str] = field(default="v1")
freeze_backbone: bool = field(default=False)
tune_mm_mlp_adapter: bool = field(default=False)
vision_tower: Optional[str] = field(default=None)
mm_vision_select_layer: Optional[int] = field(
default=-1
) # default to the last layer
pretrain_mm_mlp_adapter: Optional[str] = field(default=None)
mm_use_im_start_end: bool = field(default=False)
mm_use_im_patch_token: bool = field(default=True)
mm_vision_select_feature: Optional[str] = field(default="patch")
freeze_mm_mlp_adapter: bool = field(default=True)
@dataclass
class DataArguments:
data_path: str = field(default="tatsu-lab/alpaca_farm")
dataset_name: str = field(default="alpaca_instructions")
train_splits: List[str] = field(default_factory=lambda: ["unlabeled"])
stop_token: Optional[str] = field(
default=None,
metadata={"help": "Token to stop generation with."},
)
# From LLaVA
lazy_preprocess: bool = False
is_multimodal: bool = False
image_folder: Optional[str] = field(default=None)
image_aspect_ratio: str = "square"
image_grid_pinpoints: Optional[str] = field(default=None)
@dataclass
class TrainingArguments(transformers.Seq2SeqTrainingArguments):
cache_dir: Optional[str] = field(default=None)
# From AlpacaFarm
truncate_tokens: Optional[List[str]] = field(
default_factory=lambda: None,
metadata={
"help": "Tokens in strings to truncate at first occurrence. "
"This was used in original OAI summarization paper to avoid models returning incomplete sentences. "
},
)
model_max_length: int = field(
default=512,
metadata={
"help": "Maximum sequence length. Sequences will be left padded to this length always during training."
},
)
# From QLoRA
full_finetune: bool = field(
default=False, metadata={"help": "Finetune the entire model without adapters."}
)
adam8bit: bool = field(default=False, metadata={"help": "Use 8-bit adam."})
double_quant: bool = field(
default=True,
metadata={
"help": "Compress the quantization statistics through double quantization."
},
)
quant_type: str = field(
default="nf4",
metadata={
"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."
},
)
bits: int = field(default=4, metadata={"help": "How many bits to use."})
lora_modules: Optional[List[str]] = field(
default=None,
metadata={
"help": "Which modules to use LoRA on. If None, will use all linear layers."
},
)
lora_r: int = field(default=64, metadata={"help": "Lora R dimension."})
lora_alpha: float = field(default=16, metadata={"help": " Lora alpha."})
lora_dropout: float = field(default=0.0, metadata={"help": "Lora dropout."})
report_to: str = field(
default="none",
metadata={"help": "To use wandb or something else for reporting."},
)
resume_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to the directory containing the checkpoint to resume."},
)
output_dir: str = field(
default="./output", metadata={"help": "The output dir for logs and checkpoints"}
)
optim: str = field(
default="paged_adamw_32bit", metadata={"help": "The optimizer to be used"}
)
per_device_train_batch_size: int = field(
default=1,
metadata={
"help": "The training batch size per GPU. Increase for better speed."
},
)
gradient_accumulation_steps: int = field(
default=16,
metadata={
"help": "How many gradients to accumulate before to perform an optimizer step"
},
)
weight_decay: float = field(
default=0.0, metadata={"help": "The L2 weight decay rate of AdamW"}
) # use lora dropout instead for regularization if needed
learning_rate: float = field(default=0.0002, metadata={"help": "The learnign rate"})
remove_unused_columns: bool = field(
default=False,
metadata={"help": "Removed unused columns. Needed to make this codebase work."},
)
max_grad_norm: float = field(
default=0.3,
metadata={
"help": "Gradient clipping max norm. This is tuned and works well for all models tested."
},
)
gradient_checkpointing: bool = field(
default=True,
metadata={"help": "Use gradient checkpointing. You want to use this."},
)
do_train: bool = field(
default=True,
metadata={"help": "To train or not to train, that is the question?"},
)
lr_scheduler_type: str = field(
default="constant",
metadata={
"help": "Learning rate schedule. Constant a bit better than cosine, and has advantage for analysis"
},
)
warmup_ratio: float = field(
default=0.03, metadata={"help": "Fraction of steps to do a warmup for"}
)
logging_steps: int = field(
default=10,
metadata={"help": "The frequency of update steps after which to log the loss"},
)
group_by_length: bool = field(
default=False,
metadata={
"help": "Group sequences into batches with same length. Saves memory and speeds up training considerably."
},
)
save_strategy: str = field(
default="steps", metadata={"help": "When to save checkpoints"}
)
save_steps: int = field(default=10000, metadata={"help": "How often to save a model"})
save_total_limit: int = field(
default=40,
metadata={
"help": "How many checkpoints to save before the oldest is overwritten"
},
)
resume_from_training: bool = field(
default=False, metadata={"help": "Resume from training"}
)
num_levels: Optional[int] = field(default=4, metadata={"help": "The number of levels."})
def set_truncate_token_ids(self, tokenizer: transformers.PreTrainedTokenizer):
"""Convert truncation token to token ids.
This is called in RLTrainer.
"""
truncate_tokens = self.truncate_tokens
if truncate_tokens is None:
truncate_token_ids = None
else:
truncate_token_ids = tokenizer.convert_tokens_to_ids(truncate_tokens)
self.truncate_token_ids = truncate_token_ids
def rank0_print(*args):
local_rank = int(os.environ.get("LOCAL_RANK", 0))
if local_rank == 0:
print(*args)
def train():
hfparser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments)
)
(
model_args,
data_args,
training_args,
extra_args,
) = hfparser.parse_args_into_dataclasses(return_remaining_strings=True)
args = argparse.Namespace(
**vars(model_args), **vars(data_args), **vars(training_args)
)
training_args.data_config = data_args
checkpoint_dir, completed_training = get_last_checkpoint(args.output_dir)
if checkpoint_dir is None and args.resume_dir is not None:
checkpoint_dir, _ = get_last_checkpoint(args.resume_dir)
completed_training = False
if completed_training:
rank0_print("Detected that training was already completed!")
if checkpoint_dir is None:
rank0_print("Training from scratch.")
else:
rank0_print("Loading from checkpoint:", checkpoint_dir)
accelerator = AlpacaAccelerator(
log_with=args.report_to,
project_dir=args.logging_dir,
gradient_accumulation_steps=args.gradient_accumulation_steps,
even_batches=True, # Make sure the batch size on each device is the same.
split_batches=False, # Don't break a batch into smaller chunks.
step_scheduler_with_optimizer=False, # Untie optimizer and scheduler step.
# Value model might not use all parameters (e.g., lm-head) in the forward pass.
kwargs_handlers=[
DistributedDataParallelKwargs(
find_unused_parameters=args.ddp_find_unused_parameters,
)
],
)
dict_args = vars(args)
# value should be one of int, float, str, bool, or torch.Tensor
for k in dict_args:
if type(dict_args[k]) not in [int, float, str, bool, torch.Tensor]:
dict_args[k] = str(dict_args[k])
# print(dict_args)
accelerator.init_trackers(
"dpo_trainer",
config=dict_args,
)
logger.warning(
accelerator.state,
# main_process_only=False,
)
tokenizer_model_name = args.base_model_name
TokenizerClass = AutoTokenizer
# Tokenizer
tokenizer = TokenizerClass.from_pretrained(
tokenizer_model_name,
cache_dir=args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="left",
truncation_side="right",
use_fast=False,
)
tokenizer.pad_token = tokenizer.unk_token
if model_args.version in conversation_lib.conv_templates:
print(model_args.version)
conversation_lib.default_conversation = conversation_lib.conv_templates[
model_args.version
]
else:
conversation_lib.default_conversation = conversation_lib.conv_templates[
"vicuna_v1"
]
if model_args.vision_tower is not None:
from llava.model import LlavaLlamaForCausalLM
with DisableLogger():
model = LlavaLlamaForCausalLM.from_pretrained(
model_args.base_model_name,
cache_dir=training_args.cache_dir,
)
vision_tower = model.get_vision_tower()
if not vision_tower.is_loaded:
vision_tower.load_model()
del model
data_args.image_processor = vision_tower.image_processor
data_args.is_multimodal = True
data_args.mm_use_im_start_end = model_args.mm_use_im_start_end
training_args.use_im_start_end = model_args.mm_use_im_start_end
data_args.num_levels = args.num_levels
# Dataset
model_module = make_models(args, tokenizer, accelerator)
tokenizer = model_module["tokenizer"]
data_module: dict = make_rl_data_module(
tokenizer=tokenizer, data_args=data_args,
)
rank = int(os.environ.get("RANK", 0))
world_size = int(os.environ.get("WORLD_SIZE", 1))
node_id = rank // torch.cuda.device_count()
print(f"Distributed info: rank={rank}, world_size={world_size}, node_id={node_id}")
print(f"Load Models From Checkpoint: {checkpoint_dir}")
trainer = DPOTrainer(
args=training_args,
accelerator=accelerator,
**data_module,
**model_module
)
trainer.train(
resume_from_checkpoint=args.resume_dir
if training_args.resume_from_training
else None
)
trainer.save_model(args.output_dir)
trainer.save_state()
if __name__ == "__main__":
train()