-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathmain_pix2pixBEGAN.py
255 lines (228 loc) · 10.5 KB
/
main_pix2pixBEGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from __future__ import print_function
import argparse
import os
import sys
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
cudnn.fastest = True
import torch.optim as optim
import torchvision.utils as vutils
from torch.autograd import Variable
import models.pix2pixBEGAN as net
from misc import *
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='pix2pix', help='dataset name (It does not need to be modified)')
parser.add_argument('--dataroot', default='', help='path to trn dataset')
parser.add_argument('--valDataroot', default='', help='path to val dataset')
parser.add_argument('--mode', type=str, default='B2A', help='B2A: facade, A2B: edges2shoes')
parser.add_argument('--batchSize', type=int, default=1, help='input batch size')
parser.add_argument('--valBatchSize', type=int, default=64, help='val. input batch size')
parser.add_argument('--originalSize', type=int,
default=286, help='the height / width of the original input image')
parser.add_argument('--imageSize', type=int,
default=256, help='the height / width of the cropped input image to network')
parser.add_argument('--inputChannelSize', type=int,
default=3, help='size of the input channels')
parser.add_argument('--outputChannelSize', type=int,
default=3, help='size of the output channels')
parser.add_argument('--ngf', type=int, default=64)
parser.add_argument('--ndf', type=int, default=64)
parser.add_argument('--hidden_size', type=int, default=64, help='bottleneck dimension of Discriminator')
parser.add_argument('--niter', type=int, default=400, help='number of epochs to train for')
parser.add_argument('--lrD', type=float, default=0.0002, help='learning rate')
parser.add_argument('--lrG', type=float, default=0.0002, help='learning rate')
parser.add_argument('--annealStart', type=int, default=0, help='annealing learning rate start to')
parser.add_argument('--annealEvery', type=int, default=400, help='epoch to reaching at learning rate of 0')
parser.add_argument('--lambdaGAN', type=float, default=1, help='lambdaGAN')
parser.add_argument('--lambdaIMG', type=float, default=0.1, help='lambdaIMG')
parser.add_argument('--poolSize', type=int, default=50, help='Buffer size for storing previously generated samples from G')
parser.add_argument('--lambda_k', type=float, default=0.001, help='learning rate of k')
parser.add_argument('--gamma', type=float, default=0.7, help='balance bewteen D and G')
parser.add_argument('--wd', type=float, default=0.0000, help='weight decay in D')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam')
parser.add_argument('--netG', default='', help="path to netG (to continue training)")
parser.add_argument('--netD', default='', help="path to netD (to continue training)")
parser.add_argument('--workers', type=int, help='number of data loading workers', default=2)
parser.add_argument('--exp', default='sample', help='folder to output images and model checkpoints')
parser.add_argument('--display', type=int, default=5, help='interval for displaying train-logs')
parser.add_argument('--evalIter', type=int, default=500, help='interval for evauating(generating) images from valDataroot')
opt = parser.parse_args()
print(opt)
create_exp_dir(opt.exp)
opt.manualSeed = 101
#opt.manualSeed = random.randint(1, 10000)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
torch.cuda.manual_seed_all(opt.manualSeed)
print("Random Seed: ", opt.manualSeed)
# NOTE get dataloader
dataloader = getLoader(opt.dataset,
opt.dataroot,
opt.originalSize,
opt.imageSize,
opt.batchSize,
opt.workers,
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
split='train',
shuffle=True,
seed=opt.manualSeed)
valDataloader = getLoader(opt.dataset,
opt.valDataroot,
opt.imageSize, #opt.originalSize,
opt.imageSize,
opt.valBatchSize,
opt.workers,
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
split='val',
shuffle=False,
seed=opt.manualSeed)
# get logger
trainLogger = open('%s/train.log' % opt.exp, 'w')
ngf = opt.ngf
ndf = opt.ndf
inputChannelSize = opt.inputChannelSize
outputChannelSize= opt.outputChannelSize
# NOTE get models
netG = net.G(inputChannelSize, outputChannelSize, ngf)
netG.apply(weights_init)
if opt.netG != '':
netG.load_state_dict(torch.load(opt.netG))
print(netG)
netD = net.D(inputChannelSize, ndf, opt.hidden_size)
netD.apply(weights_init)
if opt.netD != '':
netD.load_state_dict(torch.load(opt.netD))
print(netD)
criterionCAE = nn.L1Loss()
netG.train()
netD.train()
target= torch.FloatTensor(opt.batchSize, outputChannelSize, opt.imageSize, opt.imageSize)
input = torch.FloatTensor(opt.batchSize, inputChannelSize, opt.imageSize, opt.imageSize)
val_target= torch.FloatTensor(opt.valBatchSize, outputChannelSize, opt.imageSize, opt.imageSize)
val_input = torch.FloatTensor(opt.valBatchSize, inputChannelSize, opt.imageSize, opt.imageSize)
# NOTE get sample buffer
imagePool = ImagePool(opt.poolSize)
# NOTE weight for L_cGAN and L_L1 (i.e. Eq.(4) in the paper)
lambdaGAN = opt.lambdaGAN
lambdaIMG = opt.lambdaIMG
netD.cuda()
netG.cuda()
criterionCAE.cuda()
target, input = target.cuda(), input.cuda()
val_target, val_input = val_target.cuda(), val_input.cuda()
target = Variable(target)
input = Variable(input)
# get randomly sampled validation images
val_iter = iter(valDataloader)
data_val = val_iter.next()
if opt.mode == 'B2A':
val_target_cpu, val_input_cpu = data_val
elif opt.mode == 'A2B':
val_input_cpu, val_target_cpu = data_val
val_target_cpu, val_input_cpu = val_target_cpu.cuda(), val_input_cpu.cuda()
val_target.resize_as_(val_target_cpu).copy_(val_target_cpu)
val_input.resize_as_(val_input_cpu).copy_(val_input_cpu)
# get optimizer
optimizerD = optim.Adam(netD.parameters(), lr = opt.lrD, betas = (opt.beta1, 0.999), weight_decay=opt.wd)
optimizerG = optim.Adam(netG.parameters(), lr = opt.lrG, betas = (opt.beta1, 0.999), weight_decay=0.0)
# NOTE training loop
ganIterations = 0
k = 0 # control how much emphasis is put on L(G(z_D)) during gradient descent.
M_global = AverageMeter() #
for epoch in range(opt.niter):
# learning rate annealing
if epoch > opt.annealStart:
adjust_learning_rate(optimizerD, opt.lrD, epoch, None, opt.annealEvery)
adjust_learning_rate(optimizerG, opt.lrG, epoch, None, opt.annealEvery)
for i, data in enumerate(dataloader, 0):
if opt.mode == 'B2A':
target_cpu, input_cpu = data
elif opt.mode == 'A2B' :
input_cpu, target_cpu = data
batch_size = target_cpu.size(0)
target_cpu, input_cpu = target_cpu.cuda(), input_cpu.cuda()
# get paired data
target.data.resize_as_(target_cpu).copy_(target_cpu)
input.data.resize_as_(input_cpu).copy_(input_cpu)
# max_D first
for p in netD.parameters():
p.requires_grad = True
netD.zero_grad()
# NOTE: compute L_D
recon_real = netD(target)
x_hat = netG(input)
fake = x_hat.detach()
fake = Variable(imagePool.query(fake.data)) # sample from image buffer
recon_fake = netD(fake)
# compute L(x)
errD_real = torch.mean(torch.abs(recon_real - target))
# compute L(G(z_D))
errD_fake = torch.mean(torch.abs(recon_fake - fake))
# compute L_D
errD = errD_real - k * errD_fake
errD.backward()
optimizerD.step()
# prevent computing gradients of weights in Discriminator
for p in netD.parameters():
p.requires_grad = False
netG.zero_grad() # start to update G
# NOTE compute L_L1 (eq.(4) in the pix2pix paper
L_img_ = criterionCAE(x_hat, target)
L_img = lambdaIMG * L_img_
if lambdaIMG <> 0:
#L_img.backward(retain_graph=True) # in case of current version of pytorch
L_img.backward(retain_variables=True)
# NOTE compute L_G
recon_fake = netD(x_hat) # reuse previously computed x_hat
errG_ = torch.mean(torch.abs(recon_fake - x_hat))
errG = lambdaGAN * errG_
if lambdaGAN <> 0:
errG.backward()
# update praams
optimizerG.step()
ganIterations += 1
# NOTE compute k_t and M_global
balance = (opt.gamma * errD_real - errD_fake).data[0]
k = min(max(k + opt.lambda_k * balance, 0), 1)
measure = errD_real.data[0] + np.abs(balance)
M_global.update(measure, target.size(0))
# logging
if ganIterations % opt.display == 0:
print('[%d/%d][%d/%d] Ld: %f Lg: %f Limg: %f, M_global: %f(%f), K: %f, balance.: %f lr: %f'
% (epoch, opt.niter, i, len(dataloader),
errD.data[0], errG.data[0], L_img.data[0],
measure, M_global.avg, k, balance,
optimizerG.param_groups[0]['lr']))
sys.stdout.flush()
trainLogger.write('%d\t%f\t%f\t%f\t%f\t%f\t%f\t%f\n' % \
(i, errD.data[0], errG.data[0], L_img.data[0], measure, M_global.avg, k, balance))
trainLogger.flush()
if ganIterations % opt.evalIter == 0:
# NOTE generate samples with current G
val_batch_output = torch.FloatTensor(val_input.size(0)*5,
3,
val_input.size(2),
val_input.size(3)).fill_(0)
for idx in range(val_input.size(0)):
single_img = val_input[idx,:,:,:].unsqueeze(0)
target_img = val_target[idx,:,:,:].unsqueeze(0)
val_inputv = Variable(single_img, volatile=True)
val_targetv= Variable(target_img, volatile=True)
recon_real = netD(val_targetv)
x_hat_val = netG(val_inputv)
recon_fake = netD(x_hat_val)
val_batch_output[idx*5+0,:,:,:].copy_(val_inputv.data.squeeze(0))
val_batch_output[idx*5+1,:,:,:].copy_(val_targetv.data.squeeze(0))
val_batch_output[idx*5+2,:,:,:].copy_(recon_real.data.squeeze(0))
val_batch_output[idx*5+3,:,:,:].copy_(x_hat_val.data.squeeze(0))
val_batch_output[idx*5+4,:,:,:].copy_(recon_fake.data.squeeze(0))
vutils.save_image(val_batch_output, '%s/generated_epoch_%08d_iter%08d.png' % \
(opt.exp, epoch, ganIterations), nrow=10, normalize=True)
# do checkpointing
torch.save(netG.state_dict(), '%s/netG_epoch_%d.pth' % (opt.exp, epoch))
torch.save(netD.state_dict(), '%s/netD_epoch_%d.pth' % (opt.exp, epoch))
trainLogger.close()