-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy patheval.py
336 lines (271 loc) · 15 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import argparse
import json
import os
import sys
import tqdm
from omegaconf import OmegaConf
from huggingface_hub import hf_hub_download
import lpips as lpips_lib
import torch
import torchvision
from torchvision import transforms
from torch.utils.data import DataLoader
from gaussian_renderer import render_predicted
from scene.gaussian_predictor import GaussianSplatPredictor
from datasets.dataset_factory import get_dataset
from utils.loss_utils import ssim as ssim_fn
class Metricator():
def __init__(self, device):
self.lpips_net = lpips_lib.LPIPS(net='vgg').to(device)
def compute_metrics(self, image, target):
lpips = self.lpips_net( image.unsqueeze(0) * 2 - 1, target.unsqueeze(0) * 2 - 1).item()
psnr = -10 * torch.log10(torch.mean((image - target) ** 2, dim=[0, 1, 2])).item()
ssim = ssim_fn(image, target).item()
return psnr, ssim, lpips
@torch.no_grad()
def evaluate_dataset(model, dataloader, device, model_cfg, save_vis=0, out_folder=None
):
"""
Runs evaluation on the dataset passed in the dataloader.
Computes, prints and saves PSNR, SSIM, LPIPS.
Args:
save_vis: how many examples will have visualisations saved
"""
if save_vis > 0:
os.makedirs(out_folder, exist_ok=True)
with open("scores.txt", "w+") as f:
f.write("")
bg_color = [1, 1, 1] if model_cfg.data.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
# instantiate metricator
metricator = Metricator(device)
psnr_all_examples_novel = []
ssim_all_examples_novel = []
lpips_all_examples_novel = []
psnr_all_examples_cond = []
ssim_all_examples_cond = []
lpips_all_examples_cond = []
for d_idx, data in enumerate(tqdm.tqdm(dataloader)):
psnr_all_renders_novel = []
ssim_all_renders_novel = []
lpips_all_renders_novel = []
psnr_all_renders_cond = []
ssim_all_renders_cond = []
lpips_all_renders_cond = []
data = {k: v.to(device) for k, v in data.items()}
rot_transform_quats = data["source_cv2wT_quat"][:, :model_cfg.data.input_images]
if model_cfg.data.category == "hydrants" or model_cfg.data.category == "teddybears":
focals_pixels_pred = data["focals_pixels"][:, :model_cfg.data.input_images, ...]
else:
focals_pixels_pred = None
if model_cfg.data.origin_distances:
input_images = torch.cat([data["gt_images"][:, :model_cfg.data.input_images, ...],
data["origin_distances"][:, :model_cfg.data.input_images, ...]],
dim=2)
else:
input_images = data["gt_images"][:, :model_cfg.data.input_images, ...]
example_id = dataloader.dataset.get_example_id(d_idx)
if d_idx < save_vis:
out_example_gt = os.path.join(out_folder, "{}_".format(d_idx) + example_id + "_gt")
out_example = os.path.join(out_folder, "{}_".format(d_idx) + example_id)
os.makedirs(out_example_gt, exist_ok=True)
os.makedirs(out_example, exist_ok=True)
# batch has length 1, the first image is conditioning
reconstruction = model(input_images,
data["view_to_world_transforms"][:, :model_cfg.data.input_images, ...],
rot_transform_quats,
focals_pixels_pred)
for r_idx in range( data["gt_images"].shape[1]):
if "focals_pixels" in data.keys():
focals_pixels_render = data["focals_pixels"][0, r_idx]
else:
focals_pixels_render = None
image = render_predicted({k: v[0].contiguous() for k, v in reconstruction.items()},
data["world_view_transforms"][0, r_idx],
data["full_proj_transforms"][0, r_idx],
data["camera_centers"][0, r_idx],
background,
model_cfg,
focals_pixels=focals_pixels_render)["render"]
if d_idx < save_vis:
# vis_image_preds(reconstruction, out_example)
torchvision.utils.save_image(image, os.path.join(out_example, '{0:05d}'.format(r_idx) + ".png"))
torchvision.utils.save_image(data["gt_images"][0, r_idx, ...], os.path.join(out_example_gt, '{0:05d}'.format(r_idx) + ".png"))
# exclude non-foreground images from metric computation
if not torch.all(data["gt_images"][0, r_idx, ...] == 0):
psnr, ssim, lpips = metricator.compute_metrics(image, data["gt_images"][0, r_idx, ...])
if r_idx < model_cfg.data.input_images:
psnr_all_renders_cond.append(psnr)
ssim_all_renders_cond.append(ssim)
lpips_all_renders_cond.append(lpips)
else:
psnr_all_renders_novel.append(psnr)
ssim_all_renders_novel.append(ssim)
lpips_all_renders_novel.append(lpips)
psnr_all_examples_cond.append(sum(psnr_all_renders_cond) / len(psnr_all_renders_cond))
ssim_all_examples_cond.append(sum(ssim_all_renders_cond) / len(ssim_all_renders_cond))
lpips_all_examples_cond.append(sum(lpips_all_renders_cond) / len(lpips_all_renders_cond))
psnr_all_examples_novel.append(sum(psnr_all_renders_novel) / len(psnr_all_renders_novel))
ssim_all_examples_novel.append(sum(ssim_all_renders_novel) / len(ssim_all_renders_novel))
lpips_all_examples_novel.append(sum(lpips_all_renders_novel) / len(lpips_all_renders_novel))
with open("scores.txt", "a+") as f:
f.write("{}_".format(d_idx) + example_id + \
" " + str(psnr_all_examples_novel[-1]) + \
" " + str(ssim_all_examples_novel[-1]) + \
" " + str(lpips_all_examples_novel[-1]) + "\n")
scores = {"PSNR_cond": sum(psnr_all_examples_cond) / len(psnr_all_examples_cond),
"SSIM_cond": sum(ssim_all_examples_cond) / len(ssim_all_examples_cond),
"LPIPS_cond": sum(lpips_all_examples_cond) / len(lpips_all_examples_cond),
"PSNR_novel": sum(psnr_all_examples_novel) / len(psnr_all_examples_novel),
"SSIM_novel": sum(ssim_all_examples_novel) / len(ssim_all_examples_novel),
"LPIPS_novel": sum(lpips_all_examples_novel) / len(lpips_all_examples_novel)}
return scores
@torch.no_grad()
def eval_robustness(model, dataloader, device, model_cfg, out_folder=None):
"""
Evaluates robustness to shift and zoom
"""
os.makedirs(out_folder, exist_ok=True)
bg_color = [1, 1, 1] if model_cfg.data.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
obj_idx = 98
data = {k: v.unsqueeze(0) for k, v in dataloader.dataset[obj_idx].items()}
data = {k: v.to(device) for k, v in data.items()}
rot_transform_quats = data["source_cv2wT_quat"][:, :model_cfg.data.input_images]
focals_pixels_pred = None
input_images = data["gt_images"][:, :model_cfg.data.input_images, ...]
example_id = dataloader.dataset.get_example_id(obj_idx)
resize_to_128_transform = transforms.Resize(128,
interpolation=transforms.InterpolationMode.BILINEAR)
for test_zoom_idx, crop_size in enumerate([-40, -30, -20, -10, 0, 10, 20, 30, 40]):
# ================ zoom transforms ===============
if crop_size >= 0:
# crop the source images
input_images = data["gt_images"][
0, :model_cfg.data.input_images,
:, crop_size:model_cfg.data.training_resolution-crop_size, crop_size:model_cfg.data.training_resolution-crop_size]
elif crop_size < 0:
# pad only the source images
padding_transform = transforms.Pad(padding=-crop_size,
fill=1.0)
input_images = padding_transform(data["gt_images"][0, :model_cfg.data.input_images])
if crop_size != 0:
input_images = resize_to_128_transform(input_images)
# ================ shift transforms ===============
x_shift = 0
y_shift = crop_size
padding_transform = transforms.Pad(padding=(abs(x_shift), abs(y_shift)),
fill=1.0)
padded_source = padding_transform(data["gt_images"][0, :model_cfg.data.input_images])
y_start = abs(y_shift) + y_shift
x_start = abs(x_shift) + x_shift
input_images = padded_source[ :, :,
y_start : model_cfg.data.training_resolution + y_start,
x_start : model_cfg.data.training_resolution + x_start]
input_images = input_images.unsqueeze(0)
out_example_gt = os.path.join(out_folder, "{}_".format(test_zoom_idx) + example_id + "_gt")
out_example = os.path.join(out_folder, "{}_".format(test_zoom_idx) + example_id)
os.makedirs(out_example_gt, exist_ok=True)
os.makedirs(out_example, exist_ok=True)
# batch has length 1, the first image is conditioning
reconstruction = model(input_images,
data["view_to_world_transforms"][:, :model_cfg.data.input_images, ...],
rot_transform_quats,
focals_pixels_pred)
for r_idx in range( data["gt_images"].shape[1]):
if "focals_pixels" in data.keys():
focals_pixels_render = data["focals_pixels"][0, r_idx]
else:
focals_pixels_render = None
image = render_predicted({k: v[0].contiguous() for k, v in reconstruction.items()},
data["world_view_transforms"][0, r_idx],
data["full_proj_transforms"][0, r_idx],
data["camera_centers"][0, r_idx],
background,
model_cfg,
focals_pixels=focals_pixels_render)["render"]
torchvision.utils.save_image(image, os.path.join(out_example, '{0:05d}'.format(r_idx) + ".png"))
torchvision.utils.save_image(data["gt_images"][0, r_idx, ...], os.path.join(out_example_gt, '{0:05d}'.format(r_idx) + ".png"))
@torch.no_grad()
def main(dataset_name, experiment_path, device_idx, split='test', save_vis=0, out_folder=None):
# set device and random seed
device = torch.device("cuda:{}".format(device_idx))
torch.cuda.set_device(device)
if args.experiment_path is None:
cfg_path = hf_hub_download(repo_id="szymanowiczs/splatter-image-v1",
filename="config_{}.yaml".format(dataset_name))
if dataset_name in ["gso", "objaverse"]:
model_name = "latest"
else:
model_name = dataset_name
model_path = hf_hub_download(repo_id="szymanowiczs/splatter-image-v1",
filename="model_{}.pth".format(model_name))
else:
cfg_path = os.path.join(experiment_path, ".hydra", "config.yaml")
model_path = os.path.join(experiment_path, "model_latest.pth")
# load cfg
training_cfg = OmegaConf.load(cfg_path)
# check that training and testing datasets match if not using official models
if args.experiment_path is not None:
if dataset_name == "gso":
# GSO model must have been trained on objaverse
assert training_cfg.data.category == "objaverse", "Model-dataset mismatch"
else:
assert training_cfg.data.category == dataset_name, "Model-dataset mismatch"
# load model
model = GaussianSplatPredictor(training_cfg)
ckpt_loaded = torch.load(model_path, map_location=device)
model.load_state_dict(ckpt_loaded["model_state_dict"])
model = model.to(device)
model.eval()
print('Loaded model!')
# override dataset in cfg if testing objaverse model
if training_cfg.data.category == "objaverse" and split in ["test", "vis"]:
training_cfg.data.category = "gso"
# instantiate dataset loader
dataset = get_dataset(training_cfg, split)
dataloader = DataLoader(dataset, batch_size=1, shuffle=False,
persistent_workers=True, pin_memory=True, num_workers=1)
scores = evaluate_dataset(model, dataloader, device, training_cfg, save_vis=save_vis, out_folder=out_folder)
if split != 'vis':
print(scores)
return scores
def parse_arguments():
parser = argparse.ArgumentParser(description='Evaluate model')
parser.add_argument('dataset_name', type=str, help='Dataset to evaluate on',
choices=['objaverse', 'gso', 'cars', 'chairs', 'hydrants', 'teddybears', 'nmr'])
parser.add_argument('--experiment_path', type=str, default=None, help='Path to the parent folder of the model. \
If set to None, a pretrained model will be downloaded')
parser.add_argument('--split', type=str, default='test', choices=['test', 'val', 'vis', 'train'],
help='Split to evaluate on (default: test). \
Using vis renders loops and does not return scores - to be used for visualisation. \
You can also use this to evaluate on the training or validation splits.')
parser.add_argument('--out_folder', type=str, default='out', help='Output folder to save renders (default: out)')
parser.add_argument('--save_vis', type=int, default=0, help='Number of examples for which to save renders (default: 0)')
return parser.parse_args()
if __name__ == "__main__":
args = parse_arguments()
dataset_name = args.dataset_name
print("Evaluating on dataset {}".format(dataset_name))
experiment_path = args.experiment_path
if args.experiment_path is None:
print("Will load a model released with the paper.")
else:
print("Loading a local model according to the experiment path")
split = args.split
if split == 'vis':
print("Will not print or save scores. Use a different --split to return scores.")
out_folder = args.out_folder
save_vis = args.save_vis
if save_vis == 0:
print("Not saving any renders (only computing scores). To save renders use flag --save_vis")
scores = main(dataset_name, experiment_path, 0, split=split, save_vis=save_vis, out_folder=out_folder)
# save scores to json in the experiment folder if appropriate split was used
if split != "vis":
if experiment_path is not None:
score_out_path = os.path.join(experiment_path,
"{}_scores.json".format(split))
else:
score_out_path = "{}_{}_scores.json".format(dataset_name, split)
with open(score_out_path, "w+") as f:
json.dump(scores, f, indent=4)