-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcumulativeKDAHR.r
executable file
·484 lines (392 loc) · 20.8 KB
/
cumulativeKDAHR.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
getwd()
library(dplyr)
library(readr)
library(tidyr)
library(tibble)
library(ggplot2)
library(RColorBrewer)
# load TEPIC predictions
ADay1 = read_delim("AHR_A_Day1_0.95_50000.dat", delim = "\t", col_names = FALSE) %>%
rename(TF = X1, ensembl_gene_id = X2, input = X3, time = X4)
ADay1
ODay1 = read_delim("AHR_O_Day1_0.95_50000.dat", delim = "\t", col_names = FALSE) %>%
rename(TF = X1, ensembl_gene_id = X2, input = X3, time = X4)
ODay1
Day0 = read_delim("AHR_ST2_0.95_50000.dat", delim = "\t", col_names = FALSE) %>%
rename(TF = X1, ensembl_gene_id = X2, input = X3, time = X4)
Day0
# load DEGs from the KD per timepoint
KDADay1.DEG = read_delim("14042017-A-AHR-KD-D1-p0.1.txt", delim = "\t")
KDADay1.DEG
KDODay1.DEG = read_delim("14042017-O-AHR-KD-D1-p0.1.txt", delim = "\t")
KDODay1.DEG
KDDay0.DEG = read_delim("14042017-ST2-AHR-KD-D1-FDR0.1.txt", delim = "\t")
KDDay0.DEG
# load all GEnes per timepoint
KDADay1 = read_delim("08062017-A-AHR-KD-AllGenes.txt", delim = "\t")
KDADay1
KDODay1 = read_delim("08062017-O-AHR-KD-AllGenes.txt", delim = "\t")
KDODay1
KDDay0 = read_delim("08062017-ST2-AHR-KD-AllGenes.txt", delim = "\t")
KDDay0
# load affinitites per time point
AffDay0 = read_delim("ST2-D0-095_Decay_Affinity_Gene_View.txt.gz", delim = "\t")
AffDay0
# Select only affinities for AHR_ARNT and the top 1000
AffDay0.sort.AHR_ARNT.top1000 = AffDay0 %>%
select(geneID, `AHR::ARNT`) %>%
arrange(desc(`AHR::ARNT`)) %>%
slice(1:1000)
AffDay0.sort.AHR_ARNT.top1000
# Select only affinities for AHR_ARNT and the top 200
AffDay0.sort.AHR_ARNT.top200 = AffDay0 %>%
select(geneID, `AHR::ARNT`) %>%
arrange(desc(`AHR::ARNT`)) %>%
slice(1:200)
AffDay0.sort.AHR_ARNT.top200
# Do the same but this time for AHR alone (top 1000)
AffDay0.sort.AHR.top1000 = AffDay0 %>%
select(geneID, AHR) %>%
arrange(desc(AHR)) %>%
slice(1:1000)
AffDay0.sort.AHR.top1000
# Do the same but this time for AHR alone (top 200)
AffDay0.sort.AHR.top200 = AffDay0 %>%
select(geneID, AHR) %>%
arrange(desc(AHR)) %>%
slice(1:200)
AffDay0.sort.AHR.top200
## Affinities for adipo day1
AffA.D1 = read_delim("A-D1-095_Decay_Affinity_Gene_View.txt.gz", delim = "\t")
AffA.D1
## Take the top 200 for AHR::ARNT
AffA.D1.sort.AHR_ARNT.top200 = AffA.D1 %>%
select(geneID, `AHR::ARNT`) %>%
arrange(desc(`AHR::ARNT`)) %>%
slice(1:200)
AffA.D1.sort.AHR_ARNT.top200
## Take the top 200 for AHR
AffA.D1.sort.AHR.top200 = AffA.D1 %>%
select(geneID, AHR) %>%
arrange(desc(AHR)) %>%
slice(1:200)
AffA.D1.sort.AHR.top200
## Affinities for osteo day1
AffO.D1 = read_delim("O-D1-095_Decay_Affinity_Gene_View.txt.gz", delim = "\t")
AffO.D1
## Take the top 200 for AHR::ARNT
AffO.D1.sort.AHR_ARNT.top200 = AffO.D1 %>%
select(geneID, `AHR::ARNT`) %>%
arrange(desc(`AHR::ARNT`)) %>%
slice(1:200)
AffO.D1.sort.AHR_ARNT.top200
## Take the top 200 for AHR
AffO.D1.sort.AHR.top200 = AffO.D1 %>%
select(geneID, AHR) %>%
arrange(desc(AHR)) %>%
slice(1:200)
AffO.D1.sort.AHR.top200
#plot cumulative distribution dor ST2 day0 and calulcate p-value
pdf("14062017-CumPlot-ST2.pdf", width = 8.0, height = 8.0)
plot(ecdf(KDDay0$log2FoldChange),
xlim = c(-0.3, 0.3),
verticals = TRUE,
do.p = FALSE,
lwd = 2.7,
main = "",
ylab = "",xlab = "",
cex.axis = 2.0) ## Plot all genes
lines(as.list(environment(ecdf(KDDay0[match(unique(Day0$ensembl_gene_id),KDDay0$ensembl_gene_id),]$log2FoldChange))),
col = "blue",
lwd = 2.7,
lty = 1) ## Plot genes predicted as AHR targets
# lines(as.list(environment(ecdf(KDDay0[match(unique(AffDay0.sort.AHR_ARNT.top200$geneID), KDDay0$ensembl_gene_id),]$log2FoldChange))),
# col = "red",
# lwd = 2.7,
# lty = 1) ## Plot genes with the top 200 affinities for AHR_ARNT
lines(as.list(environment(ecdf(KDDay0[match(unique(AffDay0.sort.AHR.top200$geneID), KDDay0$ensembl_gene_id),]$log2FoldChange))),
col = "#8B1A1A",
lwd = 2.7,
lty = 1) ## Plot genes with the top 200 affinities for AHR alone
dev.off()
# test = Day0 %>%
# distinct(ensembl_gene_id) %>%
# filter(!ensembl_gene_id %in% KDDay0.DEG$ensembl_gene_id)
#compute significance values for comparison of ecdfs
KS.Day0.AllGenesvsAHRpredicted = ks.test(KDDay0$log2FoldChange, KDDay0[match(unique(Day0$ensembl_gene_id),
KDDay0$ensembl_gene_id),]$log2FoldChange)
KS.Day0.AllGenesvstop200AHR_ARNT = ks.test(KDDay0$log2FoldChange,
KDDay0[match(unique(AffDay0.sort.AHR_ARNT.top200$geneID), KDDay0$ensembl_gene_id),]$log2FoldChange)
KS.Day0.AllGenesvstop200AHR = ks.test(KDDay0$log2FoldChange,
KDDay0[match(unique(AffDay0.sort.AHR.top200$geneID), KDDay0$ensembl_gene_id),]$log2FoldChange)
#compute numbers for legend
enter = c(nrow(KDDay0),
sum(!is.na(match(unique(Day0$ensembl_gene_id), KDDay0$ensembl_gene_id))),
sum(!is.na(match(unique(AffDay0.sort.AHR_ARNT.top200$geneID), KDDay0$ensembl_gene_id))),
sum(!is.na(match(unique(AffDay0.sort.AHR.top200$geneID), KDDay0$ensembl_gene_id))))
legend("topleft", legend = c(paste("all genes"),
paste("AHR predicted targets genes"),
paste("Top 200 genes with highest affinities for AHR")),
# paste("p-value : ", KS.Day0.AllGenesvsAHRpredicted$p.value), sep = ""),
lty = c(1, 1, 1),
col = c("black", "blue", "#8B1A1A"),
lwd = 2.7, bty = "n")
# dev.off()
#plot cumulative distribution dor adipo day 1 and calulcate p-value
pdf("14062017-CumPlot-A.pdf", width = 8.0, height = 8.0)
plot(ecdf(KDADay1$log2FoldChange),
xlim = c(-0.3, 0.3),
verticals = TRUE,
do.p = FALSE,
lwd = 2.5,
main = "",
ylab = "",xlab = "",
cex.axis = 2.0)
lines(as.list(environment(ecdf(KDADay1[match(unique(ADay1$ensembl_gene_id),KDADay1$ensembl_gene_id),]$log2FoldChange))),
col = "blue",
lwd = 2.5,
lty = 1)
# lines(as.list(environment(ecdf(KDADay1[match(unique(AffA.D1.sort.AHR_ARNT.top200$geneID), KDADay1$ensembl_gene_id),]$log2FoldChange))),
# col = "red",
# lwd = 2.5,
# lty = 1) ## Plot genes with the top 200 affinities for AHR_ARNT
lines(as.list(environment(ecdf(KDADay1[match(unique(AffA.D1.sort.AHR.top200$geneID), KDADay1$ensembl_gene_id),]$log2FoldChange))),
col = "#8B1A1A",
lwd = 2.5,
lty = 1) ## Plot genes with the top 200 affinities for AHR alone
dev.off()
#compute significance values for comparison of ecdfs
KS.A.D1.AllGenesvsAHRpredicted = ks.test(KDADay1$log2FoldChange, KDADay1[match(unique(ADay1$ensembl_gene_id),
KDADay1$ensembl_gene_id),]$log2FoldChange)
KS.A.D1.AllGenesvsAHR_ARNTtop200 = ks.test(KDADay1$log2FoldChange, KDADay1[match(unique(AffA.D1.sort.AHR_ARNT.top200$geneID),
KDADay1$ensembl_gene_id),]$log2FoldChange)
KS.A.D1.AllGenesvsAHRtop200 = ks.test(KDADay1$log2FoldChange, KDADay1[match(unique(AffA.D1.sort.AHR.top200$geneID),
KDADay1$ensembl_gene_id),]$log2FoldChange)
#compute numbers for legend
enter.A = c(nrow(KDADay1),
sum(!is.na(match(unique(ADay1$ensembl_gene_id), KDADay1$ensembl_gene_id))),
sum(!is.na(match(unique(AffA.D1.sort.AHR_ARNT.top200$geneID), KDADay1$ensembl_gene_id))),
sum(!is.na(match(unique(AffA.D1.sort.AHR.top200$geneID), KDADay1$ensembl_gene_id))))
legend("topleft", legend = c(paste("all genes"),
paste("AHR predicted targets"),
paste("Top 200 genes with highest affinities for AHR")),
# paste("p-value < 2.2e-16", sep = "")),
lty = c(1, 1, 1),
col = c("black", "blue", "#8B1A1A"),
lwd = 2.7, bty = "n") ## Nedd to mark the pvalue manually because otherwise return 0
# dev.off()
#plot cumulative distribution dor osteo day 1 and calulcate p-value
pdf("14062017-CumPlot-O.pdf", width = 8.0, height = 8.0)
plot(ecdf(KDODay1$log2FoldChange),
xlim = c(-0.3, 0.3),
verticals = TRUE,
do.p = FALSE,
lwd = 2.5,
main = "",
ylab = "",xlab = "",
cex.axis = 2.0)
lines(as.list(environment(ecdf(KDODay1[match(unique(ODay1$ensembl_gene_id),KDODay1$ensembl_gene_id),]$log2FoldChange))),
col = "blue",
lwd = 2.5,
lty = 1)
# lines(as.list(environment(ecdf(KDODay1[match(unique(AffO.D1.sort.AHR_ARNT.top200$geneID), KDODay1$ensembl_gene_id),]$log2FoldChange))),
# col = "red",
# lwd = 2.5,
# lty = 1)
lines(as.list(environment(ecdf(KDODay1[match(unique(AffO.D1.sort.AHR.top200$geneID), KDODay1$ensembl_gene_id),]$log2FoldChange))),
col = "#8B1A1A",
lwd = 2.5,
lty = 1)
dev.off()
#compute significance values for comparison of ecdfs
KS.O.D1.AllGenesvsAHRpredicted = ks.test(KDODay1$log2FoldChange,
KDODay1[match(unique(ODay1$ensembl_gene_id), KDODay1$ensembl_gene_id),]$log2FoldChange)
KS.O.D1.AllGenesvsAHR_ARNTtop200 = ks.test(KDODay1$log2FoldChange,
KDODay1[match(unique(AffO.D1.sort.AHR_ARNT.top200$geneID), KDODay1$ensembl_gene_id),]$log2FoldChange)
KS.O.D1.AllGenesvsAHRtop200 = ks.test(KDODay1$log2FoldChange,
KDODay1[match(unique(AffO.D1.sort.AHR.top200$geneID), KDODay1$ensembl_gene_id),]$log2FoldChange)
#compute numbers for legend
enter.O = c(nrow(KDODay1),
sum(!is.na(match(unique(ODay1$ensembl_gene_id), KDODay1$ensembl_gene_id))),
sum(!is.na(match(unique(AffO.D1.sort.AHR_ARNT.top200$geneID), KDODay1$ensembl_gene_id))),
sum(!is.na(match(unique(AffO.D1.sort.AHR.top200$geneID), KDODay1$ensembl_gene_id))))
legend("topleft", legend = c(paste("all genes"),
paste("AHR predicted targets"),
paste("Top 200 genes with highest affinities for AHR")),
# paste("p-value : ", KS.O.D1.AllGenesvsAHRpredicted$p.value), sep = ""),
lty = c(1, 1, 1),
col = c("black", "blue", "#8B1A1A"),
lwd = 2.7, bty = "n")
# dev.off()
# lines(as.list(environment(ecdf(KDDay0.DEG[match(unique(Day0$ensembl_gene_id),KDDay0.DEG$ensembl_gene_id),]$log2FoldChange))),col="orange",lwd=2.7,lty=1) ## 444
# lines(as.list(environment(ecdf(KDDay0[match(unique(Day0$ensembl_gene_id),KDDay0.DEG$ensembl_gene_id),]$log2FoldChange))),col="pink",lwd=2.7,lty=1) ## 444
# lines(as.list(environment(ecdf(genes170$log2FoldChange))),col="pink",lwd=2.7,lty=1) ## 170
## Plot DEG from all 3 KDs as boxplot => ugly on the cumulative plot ##
# ST2 Day0
sum(!is.na(match(unique(Day0$ensembl_gene_id),KDDay0.DEG$ensembl_gene_id))) ## 444 genes are correctly predicted by EpiC-DREM out of 614 DEG in in the KD for ST2 ##
Genes444 = KDDay0.DEG[match(unique(Day0$ensembl_gene_id),KDDay0.DEG$ensembl_gene_id),] %>%
filter(!is.na(ensembl_gene_id)) %>%
arrange(log2FoldChange)## Check the 170 remaining ##
Genes444
# boxplot(Genes444$log2FoldChange, xlab = "AHR targets correctly predicted by EpiC-DREM (444) in day0", ylab = "log2FC")
Genes170 = KDDay0.DEG %>% filter(!ensembl_gene_id %in% Genes444$ensembl_gene_id)
Genes170
# boxplot(Genes170$log2FoldChange, xlab = "AHR targets not correctly predicted by EpiC-DREM (170) in day0", ylab = "log2FC")
# lmts = range(Genes444$log2FoldChange, Genes170$log2FoldChange)
# par(mfrow = c(1, 2))
# boxplot(Genes444$log2FoldChange, xlab = "AHR targets correctly predicted by EpiC-DREM (444) in day0", ylab = "log2FC", ylim = lmts)
# abline(h = 0, col = "red")
# boxplot(Genes170$log2FoldChange, xlab = "AHR targets not correctly predicted by EpiC-DREM (170) in day0", ylab = "log2FC", ylim = lmts)
# abline(h = 0, col = "red")
## Boxplot not informative, try scatterplot ##
#ST2 day0 - Combine absolute log2FC and affinities
# AffDay0 = AffDay0 %>% rename(ensembl_gene_id = geneID)
#
# KDDay0.lin = KDDay0 %>%
# inner_join(AffDay0, by = "ensembl_gene_id") %>%
# select(ensembl_gene_id, log2FoldChange, `AHR::ARNT`, AHR) %>%
# arrange(desc(`AHR::ARNT`))
# KDDay0.lin
# # ST2.AHR.pred.tar = KDDay0[match(unique(Day0$ensembl_gene_id),KDDay0$ensembl_gene_id),]
# plot(KDDay0.lin$lin_FC, KDDay0.lin$`AHR::ARNT`)
# ggplot(KDDay0, aes(x = abs(log2FoldChange))) +
# geom_density(alpha = 0.5, fill = "black") +
# geom_density(data = KDDay0[match(unique(Day0$ensembl_gene_id),KDDay0$ensembl_gene_id),], aes(x = abs(log2FoldChange)), fill = "blue", alpha = 0.2)
#
## Plot the mean of absolute log2 fold change as barplot ##
# ST2
mean.abs.KDDay0 = mean(abs(KDDay0$log2FoldChange))
mean.abs.KDDay0.AHR.predTar = mean(abs(!is.na(KDDay0[match(unique(Day0$ensembl_gene_id),KDDay0$ensembl_gene_id),]$log2FoldChange)))
df.ST2 = rownames_to_column(as.data.frame(rbind(mean.abs.KDDay0, mean.abs.KDDay0.AHR.predTar))) %>%
rename(mean = rowname, value = V1)
pdf("13062017-CumPlot-ST2-MEAN.pdf", width = 8.0, height = 4.0)
ST2.barP = ggplot(data = df.ST2, aes(x = mean, y = value, fill = mean)) +
coord_flip() +
geom_bar(stat = "identity", width = 1.0) +
theme_classic() +
scale_fill_manual(values = c("black", "red")) +
# scale_x_discrete(breaks = c("mean.abs.KDDay0", "mean.abs.KDDay0.AHR.predTar"),
# labels = c("all genes", "AHR predicted target genes")) +
theme(axis.line = element_line(colour = "black", size = 1, linetype = "solid"),
axis.text.x = element_text(face = "bold", size = 35, colour = "black"),
axis.text.y = element_blank(),
legend.position = "none") +
ylim(0, 1)
ST2.barP
dev.off()
# Adipo day 1
mean.abs.KDADay1 = mean(abs(KDADay1$log2FoldChange))
mean.abs.KDADay1.AHR.predTar = mean(abs(!is.na(KDADay1[match(unique(ADay1$ensembl_gene_id),KDADay1$ensembl_gene_id),]$log2FoldChange)))
df.AD1 = rownames_to_column(as.data.frame(rbind(mean.abs.KDADay1, mean.abs.KDADay1.AHR.predTar))) %>%
rename(mean = rowname, value = V1)
pdf("13062017-CumPlot-A-MEAN.pdf", width = 8.0, height = 4.0)
AD1.barP = ggplot(data = df.AD1, aes(x = mean, y = value, fill = mean)) +
coord_flip() +
geom_bar(stat = "identity", width = 1.0) +
theme_classic() +
scale_fill_manual(values = c("black", "red")) +
scale_x_discrete(breaks = c("mean.abs.KDADay1", "mean.abs.KDADay1.AHR.predTar"),
labels = c("all genes", "AHR predicted target genes")) +
theme(axis.line = element_line(colour = "black", size = 1, linetype = "solid"),
axis.text.x = element_text(face = "bold", size = 35, colour = "black"),
axis.text.y = element_blank(),
legend.position = "none") +
ylim(0, 1)
AD1.barP
dev.off()
# osteo day 1
mean.abs.KDODay1 = mean(abs(KDODay1$log2FoldChange))
mean.abs.KDODay1.AHR.predTar = mean(abs(!is.na(KDODay1[match(unique(ODay1$ensembl_gene_id),KDODay1$ensembl_gene_id),]$log2FoldChange)))
df.OD1 = rownames_to_column(as.data.frame(rbind(mean.abs.KDODay1, mean.abs.KDODay1.AHR.predTar))) %>%
rename(mean = rowname, value = V1)
pdf("13062017-CumPlot-O-MEAN.pdf", width = 8.0, height = 4.0)
OD1.barP = ggplot(data = df.OD1, aes(x = mean, y = value, fill = mean)) +
coord_flip() +
geom_bar(stat = "identity", width = 1.0) +
theme_classic() +
scale_fill_manual(values = c("black", "red")) +
scale_x_discrete(breaks = c("mean.abs.KDODay1", "mean.abs.KDODay1.AHR.predTar"),
labels = c("all genes", "AHR predicted target genes")) +
theme(axis.line = element_line(colour = "black", size = 1, linetype = "solid"),
axis.text.x = element_text(face = "bold", size = 35, colour = "black"),
axis.text.y = element_blank(),
legend.position = "none") +
ylim(0, 1)
OD1.barP
dev.off()
## Instead of barplots, try violin plots of log2FC ##
# ST2
KDDay0.mod = KDDay0 %>% mutate(cond = "All genes") ## All genes from day0
Day0.AHR_predTar = KDDay0[match(unique(Day0$ensembl_gene_id),KDDay0$ensembl_gene_id),] %>%
mutate(cond = "AHR predicted target genes")
Day0.AHR_ARNT.top200 = KDDay0[match(unique(AffDay0.sort.AHR_ARNT.top200$geneID), KDDay0$ensembl_gene_id),] %>%
mutate(cond = "Top 200 genes with highest affinities for AHR::ARNT")
Day0.AHR.top200 = KDDay0[match(unique(AffDay0.sort.AHR.top200$geneID), KDDay0$ensembl_gene_id),] %>%
mutate(cond = "Top 200 genes with highest affinities for AHR")
dat.ST2 = KDDay0.mod %>% bind_rows(Day0.AHR_predTar, Day0.AHR_ARNT.top200, Day0.AHR.top200)
dat.ST2$cond = as.factor(dat.ST2$cond)
ST2.violinP = ggplot(dat.ST2, aes(x = cond, y = log2FoldChange, fill = cond)) +
geom_violin(trim = FALSE) +
geom_boxplot(width = 0.1, fill = "white") +
labs(title = "Violin plot - ST2", x = "Condition", y = "log2FC") +
theme_classic() +
ylim(-2.0, 2.0) +
scale_fill_manual(values = c("blue", "black", "#8B1A1A", "red")) +
theme(axis.text.x = element_text(angle = 45)) +
scale_x_discrete(labels = c("AHR predicted target genes" = "AHR predicted \n target genes",
"All genes" = "All \n genes",
"Top 200 genes with highest affinities for AHR::ARNT" = "Top 200 genes with highest affinities \n for AHR::ARNT",
"Top 200 genes with highest affinities for AHR" = "Top 200 genes with highest affinities \n for AHR"))
pdf("14062017-ST2-ViolinPlot.pdf", width = 8.0, height = 8.0)
ST2.violinP
dev.off()
# Adipo
KDADay1.mod = KDADay1 %>% mutate(cond = "All genes")
ADay1.AHR_predTar = KDADay1[match(unique(ADay1$ensembl_gene_id),KDADay1$ensembl_gene_id),] %>%
mutate(cond = "AHR predicted target genes")
ADay1.AHR_ARNT.top200 = KDADay1[match(unique(AffA.D1.sort.AHR_ARNT.top200$geneID), KDADay1$ensembl_gene_id),] %>%
mutate(cond = "Top 200 genes with highest affinities for AHR::ARNT")
ADay1.AHR.top200 = KDADay1[match(unique(AffA.D1.sort.AHR.top200$geneID), KDADay1$ensembl_gene_id),] %>%
mutate(cond = "Top 200 genes with highest affinities for AHR")
dat.AD1 = KDADay1.mod %>% bind_rows(ADay1.AHR_predTar, ADay1.AHR_ARNT.top200, ADay1.AHR.top200)
dat.AD1$cond = as.factor(dat.AD1$cond)
AD1.violinP = ggplot(dat.AD1, aes(x = cond, y = log2FoldChange, fill = cond)) +
geom_violin(trim = FALSE) +
geom_boxplot(width = 0.1, fill = "white") +
labs(title = "Violin plot - adipo day1", x = "Condition", y = "log2FC") +
theme_classic() +
ylim(-2.0, 2.0) +
scale_fill_manual(values = c("blue", "black", "#8B1A1A", "red")) +
theme(axis.text.x = element_text(angle = 45)) +
scale_x_discrete(labels = c("AHR predicted target genes" = "AHR predicted \n target genes",
"All genes" = "All \n genes",
"Top 200 genes with highest affinities for AHR::ARNT" = "Top 200 genes with highest affinities \n for AHR::ARNT",
"Top 200 genes with highest affinities for AHR" = "Top 200 genes with highest affinities \n for AHR"))
pdf("14062017-AD1-ViolinPlot.pdf", width = 8.0, height = 8.0)
AD1.violinP
dev.off()
# Osteo
KDODay1.mod = KDODay1 %>% mutate(cond = "All genes")
ODay1.AHR_predTar = KDODay1[match(unique(ODay1$ensembl_gene_id),KDODay1$ensembl_gene_id),] %>%
mutate(cond = "AHR predicted target genes")
ODay1.AHR_ARNT.top200 = KDODay1[match(unique(AffO.D1.sort.AHR_ARNT.top200$geneID), KDODay1$ensembl_gene_id),] %>%
mutate(cond = "Top 200 genes with highest affinities for AHR::ARNT")
ODay1.AHR.top200 = KDODay1[match(unique(AffO.D1.sort.AHR.top200$geneID), KDODay1$ensembl_gene_id),] %>%
mutate(cond = "Top 200 genes with highest affinities for AHR")
dat.OD1 = KDODay1.mod %>% bind_rows(ODay1.AHR_predTar, ODay1.AHR_ARNT.top200, ODay1.AHR.top200)
dat.OD1$cond = as.factor(dat.OD1$cond)
OD1.violinP = ggplot(dat.OD1, aes(x = cond, y = log2FoldChange, fill = cond)) +
geom_violin(trim = FALSE) +
geom_boxplot(width = 0.1, fill = "white") +
labs(title = "Violin plot - osteo day1", x = "Condition", y = "log2FC") +
theme_classic() +
ylim(-2.0, 2.0) +
scale_fill_manual(values = c("blue", "black", "#8B1A1A", "red")) +
theme(axis.text.x = element_text(angle = 45)) +
scale_x_discrete(labels = c("AHR predicted target genes" = "AHR predicted \n target genes",
"All genes" = "All \n genes",
"Top 200 genes with highest affinities for AHR::ARNT" = "Top 200 genes with highest affinities \n for AHR::ARNT",
"Top 200 genes with highest affinities for AHR" = "Top 200 genes with highest affinities \n for AHR"))
pdf("14062017-OD1-ViolinPlot.pdf", width = 8.0, height = 8.0)
OD1.violinP
dev.off()