forked from Vishal-Upendran/WindNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGUI_cv.py
executable file
·52 lines (46 loc) · 2.14 KB
/
GUI_cv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#import ipywidgets as widgets
#from IPython.display import display
from glob import glob
import argparse
import os
import sys
from helperfn.utils import *
parser = argparse.ArgumentParser(description = 'Rebuilding WindNet model')
parser.add_argument('history',type = int,help = 'History parameter')
parser.add_argument('delay',type = int, help = 'Delay parameter')
parser.add_argument('basePath', default = 'None',help = 'Custom path for the trained model weights')
parser.add_argument('cv',type=int)
parser.add_argument('bp',type=str)
args = parser.parse_args()
history = args.history#int(sys.argv[2])
delay = args.delay#int(sys.argv[1])
path_for_model = args.basePath
bp=args.bp
cv=args.cv
#bp = os.path.split(os.path.abspath(os.path.dirname(__file__)))[0] #Obtain the path of file above; i.e ../BenchmarkModels
if path_for_model=='NaiveMean':
path = bp+'Models/NaiveMean/193/CV_'+str(cv)+'/Persist'+str(history)+str(delay)+'/'
datapath = path+'/Testing/NaiveMean_Predict_Test_Iter_no0.npy'
Data = np.load(datapath,allow_pickle=True).tolist()
Error = Data['stddev']
Prediction = Data['data']
elif path_for_model=='Persist':
path = bp+'Models/Persistence/211/CV_'+str(cv)+'/Persist'+str(history)+str(delay)+'/'
datapath = path+'/Testing/Persist_Predict_Test_Iter_no0.npy'
Data = np.load(datapath,allow_pickle=True).tolist()
Error = Data['stddev']
Prediction = Data['data']
elif path_for_model.split('_')[0]=='SWSVM':
path = bp+'Models/SVM_SW/193/CV_'+str(cv)+'/SVM_SW'+str(history)+str(delay)+'/'
datapath = path + '/Testing/'+path_for_model.split('_')[-1]+'_Predict_Test_Iter_no0.npy'
Data = np.load(datapath,allow_pickle=True).tolist()
Error = Data['stddev']
Prediction = Data['data']
elif path_for_model.split('_')[0]=='XGBoost':
path = bp+'Models/XGBoost_SW/193/CV_'+str(cv)+'/XGBoost_SW'+str(history)+str(delay)+'/'
datapth = path +'/Testing/'+path_for_model.split('_')[0]+'_Predict_Test_Iter_no0.npy'
Data = np.load(datapth,allow_pickle=True).tolist()
Error = Data['stddev']
Prediction = Data['data']
else:
raise ValueError('Enter a valid model type from the list given in the previous cell')