-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest_samplers.cc
218 lines (169 loc) · 6.73 KB
/
test_samplers.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/*
* Copyright (C) 2019 Swift Navigation Inc.
* Contact: Swift Navigation <[email protected]>
*
* This source is subject to the license found in the file 'LICENSE' which must
* be distributed together with this source. All other rights reserved.
*
* THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
* EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE.
*/
#include <gtest/gtest.h>
#include <albatross/Core>
#include <albatross/Samplers>
#include <albatross/SparseGP>
#include <fstream>
#include "test_models.h"
namespace albatross {
TEST(test_samplers, test_samplers_from_normal_distribution) {
const double sd = M_PI;
auto gaussian_ll = [&](const std::vector<double> &xs) {
assert(xs.size() == 1);
return -0.5 * std::pow(xs[0] / sd, 2.);
};
std::default_random_engine gen(2012);
std::size_t walkers = 10;
std::normal_distribution<double> jitter_distribution(0., 0.1 * sd);
std::vector<std::vector<double>> initial_params;
for (std::size_t i = 0; i < walkers; ++i) {
initial_params.push_back({jitter_distribution(gen)});
}
std::size_t burn_in = 100;
std::size_t thin = 10;
std::size_t max_iterations = 2000;
const auto ensemble_samples =
ensemble_sampler(gaussian_ll, initial_params, max_iterations, gen);
std::vector<double> cdfs;
for (std::size_t i = burn_in; i < ensemble_samples.size(); i += thin) {
for (const auto &sample : ensemble_samples[i]) {
const double value = sample.params[0];
const double chi_squared_sample = std::pow(value / sd, 2.);
cdfs.push_back(chi_squared_cdf(chi_squared_sample, 1));
}
}
EXPECT_LT(*std::min_element(cdfs.begin(), cdfs.end()), 0.1);
EXPECT_GT(*std::max_element(cdfs.begin(), cdfs.end()), 0.9);
double ks = uniform_ks_test(cdfs);
EXPECT_LT(ks, 0.05);
}
TEST(test_samplers, test_samplers_from_uniform_distribution) {
auto uniform_ll = [&](const std::vector<double> &xs) {
assert(xs.size() == 1);
if (xs[0] >= 0. && xs[0] <= 1.) {
return 0.;
} else {
return -LARGE_VAL;
}
};
std::default_random_engine gen(2012);
std::size_t walkers = 10;
std::uniform_real_distribution<double> jitter_distribution(0., 1.);
std::vector<std::vector<double>> initial_params;
for (std::size_t i = 0; i < walkers; ++i) {
initial_params.push_back({jitter_distribution(gen)});
}
// Insert some invalid initial parameters to make sure
// we properly initialize the sampler.
initial_params[0][0] = -1.;
initial_params[initial_params.size() - 1][0] = 10.;
std::size_t burn_in = 100;
std::size_t thin = 10;
std::size_t max_iterations = 2000;
const auto ensemble_samples =
ensemble_sampler(uniform_ll, initial_params, max_iterations, gen);
std::vector<double> cdfs;
for (std::size_t i = burn_in; i < ensemble_samples.size(); i += thin) {
for (const auto &sample : ensemble_samples[i]) {
const double value = sample.params[0];
cdfs.push_back(value);
}
}
EXPECT_LT(*std::min_element(cdfs.begin(), cdfs.end()), 0.1);
EXPECT_GT(*std::max_element(cdfs.begin(), cdfs.end()), 0.9);
double ks = uniform_ks_test(cdfs);
EXPECT_LT(ks, 0.05);
}
TEST(test_samplers, test_samplers_gp) {
const double a = 3.14;
const double b = sqrt(2.);
const double meas_noise_sd = 1.;
const auto dataset = make_toy_linear_data(a, b, meas_noise_sd, 10);
std::default_random_engine gen(2012);
const std::size_t walkers = 10;
using Noise = IndependentNoise<double>;
Noise indep_noise(meas_noise_sd);
indep_noise.sigma_independent_noise.prior = LogScaleUniformPrior(1e-3, 1e2);
LinearMean linear;
auto model = gp_from_covariance_and_mean(indep_noise, linear);
std::size_t max_iterations = 100;
std::shared_ptr<std::ostringstream> oss =
std::make_shared<std::ostringstream>();
std::shared_ptr<std::ostream> ostream =
static_cast<std::shared_ptr<std::ostream>>(oss);
auto callback = get_csv_writing_callback(model, ostream);
const auto ensemble_samples =
ensemble_sampler(model, dataset, walkers, max_iterations, gen, callback);
EXPECT_GT(oss->str().size(), 1);
}
inline long int get_group(const double &f) {
return static_cast<long int>(floor(f / 5.));
}
struct LeaveOneIntervalOut {
long int operator()(const double &f) const { return get_group(f); }
};
template <typename QRImplementation>
class SparseGaussianProcessSamplerTest : public ::testing::Test {
public:
QRImplementation qr;
};
typedef ::testing::Types<DenseQRImplementation, SPQRImplementation>
SolveStrategies;
TYPED_TEST_SUITE(SparseGaussianProcessSamplerTest, SolveStrategies);
TYPED_TEST(SparseGaussianProcessSamplerTest, test_samplers_sparse_gp) {
auto &qr_ = this->qr;
const double a = 3.14;
const double b = sqrt(2.);
const double meas_noise_sd = 1.;
const auto dataset = make_toy_linear_data(a, b, meas_noise_sd, 50);
using Noise = IndependentNoise<double>;
Noise indep_noise(meas_noise_sd);
indep_noise.sigma_independent_noise.value = 1.;
indep_noise.sigma_independent_noise.prior = LogScaleUniformPrior(1e-3, 1e2);
auto meas_noise = measurement_only(indep_noise);
LinearMean linear;
linear.offset.value = a;
linear.slope.value = b;
LeaveOneIntervalOut grouper;
UniformlySpacedInducingPoints strategy(5);
auto model = sparse_gp_from_covariance_and_mean(meas_noise, linear, grouper,
strategy, "test", qr_);
model.set_prior("inducing_nugget", FixedPrior());
model.set_prior("measurement_nugget", FixedPrior());
std::default_random_engine gen(2012);
const std::size_t walkers = 32;
std::size_t max_iterations = 100;
std::shared_ptr<std::ostringstream> oss =
std::make_shared<std::ostringstream>();
std::shared_ptr<std::ostream> os =
static_cast<std::shared_ptr<std::ostream>>(oss);
auto csv_callback = CsvWritingCallback(model.get_params(), os);
const auto samples = ensemble_sampler(model, dataset, walkers, max_iterations,
gen, csv_callback);
const std::string csv_data = oss->str();
EXPECT_GT(samples.size(), 0);
EXPECT_GT(csv_data.size(), 1);
std::istringstream iss(csv_data);
const auto initial_params = initial_params_from_csv(model.get_params(), iss);
EXPECT_EQ(initial_params.size(), samples[0].size());
oss = std::make_shared<std::ostringstream>();
auto ml_callback = MaximumLikelihoodTrackingCallback(model.get_params(), oss);
auto compute_ll = [&](const std::vector<double> ¶m_values) {
decltype(model) m(model);
m.set_tunable_params_values(param_values);
return m.log_likelihood(dataset);
};
ensemble_sampler(compute_ll, initial_params, max_iterations, gen,
ml_callback);
}
} // namespace albatross