-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest_models.h
467 lines (379 loc) · 14.6 KB
/
test_models.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
/*
* Copyright (C) 2019 Swift Navigation Inc.
* Contact: Swift Navigation <[email protected]>
*
* This source is subject to the license found in the file 'LICENSE' which must
* be distributed together with this source. All other rights reserved.
*
* THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
* EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE.
*/
#include <albatross/LeastSquares>
#include <albatross/NullModel>
#include <albatross/Ransac>
#include <albatross/SparseGP>
#include <gtest/gtest.h>
#include "test_utils.h"
namespace albatross {
inline auto make_simple_covariance_function() {
SquaredExponential<EuclideanDistance> squared_exponential(100., 100.);
IndependentNoise<double> noise(0.1);
return squared_exponential + measurement_only(noise);
}
class MakeGaussianProcess {
public:
MakeGaussianProcess(){};
auto get_model() const {
auto covariance = make_simple_covariance_function();
return gp_from_covariance(covariance);
}
auto get_dataset() const { return make_toy_linear_data(); }
};
class MakeSparseGaussianProcess {
public:
MakeSparseGaussianProcess(){};
auto get_model() const {
LeaveOneOutGrouper loo;
UniformlySpacedInducingPoints strategy(25);
auto covariance = make_simple_covariance_function();
return sparse_gp_from_covariance(covariance, loo, strategy, "example");
}
auto get_dataset() const { return make_toy_linear_data(); }
};
class MakeSparseQRSparseGaussianProcess {
public:
MakeSparseQRSparseGaussianProcess(){};
auto get_model() const {
LeaveOneOutGrouper loo;
UniformlySpacedInducingPoints strategy(25);
auto covariance = make_simple_covariance_function();
return sparse_gp_from_covariance(covariance, loo, strategy, "example",
SPQRImplementation{});
}
auto get_dataset() const { return make_toy_linear_data(); }
};
class MakeGaussianProcessWithMean {
const double a = 5.;
const double b = 1.;
public:
MakeGaussianProcessWithMean(){};
auto get_model() const {
const auto covariance = make_simple_covariance_function();
LinearMean linear_mean;
linear_mean.offset.value = a;
linear_mean.slope.value = b;
return gp_from_covariance_and_mean(covariance, linear_mean);
}
auto get_dataset() const { return make_toy_linear_data(a, b); }
};
class MakeRansacGaussianProcess {
public:
auto get_model() const {
auto covariance = make_simple_covariance_function();
RansacConfig config;
config.inlier_threshold = 1.;
config.random_sample_size = 3;
config.min_consensus_size = 3;
config.max_iterations = 20;
config.max_failed_candidates = 20;
const auto gp = gp_from_covariance(covariance);
DefaultGPRansacStrategy ransac_strategy;
return gp.ransac(ransac_strategy, config);
}
auto get_dataset() const { return make_toy_linear_data(); }
};
class MakeRansacChiSquaredGaussianProcess {
public:
auto get_model() const {
auto covariance = make_simple_covariance_function();
RansacConfig config;
config.inlier_threshold = 1.;
config.random_sample_size = 3;
config.min_consensus_size = 3;
config.max_iterations = 20;
config.max_failed_candidates = 20;
const auto gp = gp_from_covariance(covariance);
GaussianProcessRansacStrategy<ChiSquaredCdf, ChiSquaredConsensusMetric,
ChiSquaredIsValidCandidateMetric,
LeaveOneOutGrouper>
ransac_strategy;
return gp.ransac(ransac_strategy, config);
}
auto get_dataset() const { return make_toy_linear_data(); }
};
class MakeRansacChiSquaredGaussianProcessWithMean {
const double a = 5.;
const double b = 1.;
public:
auto get_model() const {
IndependentNoise<double> meas_noise(0.1);
LinearMean linear_mean;
linear_mean.offset.value = a;
linear_mean.slope.value = b;
const auto gp = gp_from_covariance_and_mean(meas_noise, linear_mean);
RansacConfig config;
config.inlier_threshold = 1.;
config.random_sample_size = 3;
config.min_consensus_size = 3;
config.max_iterations = 20;
config.max_failed_candidates = 20;
GaussianProcessRansacStrategy<ChiSquaredCdf, ChiSquaredConsensusMetric,
ChiSquaredIsValidCandidateMetric,
LeaveOneOutGrouper>
ransac_strategy;
return gp.ransac(ransac_strategy, config);
}
auto get_dataset() const { return make_toy_linear_data(a, b); }
};
namespace adapted {
inline std::vector<double>
convert_features(const std::vector<AdaptedFeature> &features) {
std::vector<double> converted;
for (const auto &f : features) {
converted.push_back(f.value);
}
return converted;
}
} // namespace adapted
template <typename CovarianceFunc>
class AdaptedGaussianProcess
: public GaussianProcessBase<CovarianceFunc, ZeroMean,
AdaptedGaussianProcess<CovarianceFunc>> {
public:
using Base = GaussianProcessBase<CovarianceFunc, ZeroMean,
AdaptedGaussianProcess<CovarianceFunc>>;
using Base::_fit_impl;
using Base::_predict_impl;
using Base::Base;
using Base::compute_covariance;
using FitType = Fit<GPFit<Eigen::SerializableLDLT, double>>;
template <typename FeatureType, typename PredictType, typename GroupKey>
std::map<GroupKey, PredictType>
cross_validated_predictions(const RegressionDataset<FeatureType> &dataset,
const GroupIndexer<GroupKey> &group_indexer,
PredictTypeIdentity<PredictType> identity) const {
return gp_cross_validated_predictions(dataset, group_indexer, *this,
identity);
}
auto _fit_impl(const std::vector<AdaptedFeature> &features,
const MarginalDistribution &targets) const {
const auto converted = adapted::convert_features(features);
return Base::_fit_impl(converted, targets);
}
template <typename PredictType>
PredictType _predict_impl(const std::vector<AdaptedFeature> &features,
const FitType &adapted_gp_fit,
PredictTypeIdentity<PredictType> &&) const {
return Base::_predict_impl(adapted::convert_features(features),
adapted_gp_fit,
PredictTypeIdentity<PredictType>());
}
Eigen::MatrixXd
compute_covariance(const std::vector<AdaptedFeature> &features) const {
return this->covariance_function_(adapted::convert_features(features));
}
};
class MakeAdaptedGaussianProcess {
public:
auto get_model() const {
auto covariance = make_simple_covariance_function();
AdaptedGaussianProcess<decltype(covariance)> gp(covariance);
return gp;
}
auto get_dataset() const { return make_adapted_toy_linear_data(); }
};
struct AdaptedRansacStrategy
: public GaussianProcessRansacStrategy<
NegativeLogLikelihood<JointDistribution>, FeatureCountConsensusMetric,
AlwaysAcceptCandidateMetric, LeaveOneOutGrouper> {
template <typename ModelType>
auto operator()(const ModelType &model,
const RegressionDataset<AdaptedFeature> &dataset) const {
const RegressionDataset<double> converted(
adapted::convert_features(dataset.features), dataset.targets);
const auto indexer = get_indexer(converted);
const FeatureCountConsensusMetric consensus_metric;
const AlwaysAcceptCandidateMetric always_accept;
return get_gp_ransac_functions(
model.prior(converted.features), converted.targets, indexer,
this->inlier_metric_, consensus_metric, always_accept);
}
};
class MakeRansacAdaptedGaussianProcess {
public:
auto get_model() const {
auto covariance = make_simple_covariance_function();
RansacConfig config;
config.inlier_threshold = 1.;
config.random_sample_size = 3;
config.min_consensus_size = 3;
config.max_iterations = 20;
config.max_failed_candidates = 20;
AdaptedGaussianProcess<decltype(covariance)> gp(covariance);
AdaptedRansacStrategy ransac_strategy;
return gp.ransac(ransac_strategy, config);
}
auto get_dataset() const { return make_adapted_toy_linear_data(); }
};
class MakeLinearRegression {
public:
LinearRegression get_model() const { return LinearRegression(); }
RegressionDataset<double> get_dataset() const {
return make_toy_linear_data();
}
};
class MakeNullModel {
public:
NullModel get_model() const { return NullModel(); }
RegressionDataset<double> get_dataset() const {
return make_toy_linear_data();
}
};
template <typename ModelTestCase>
class RegressionModelTester : public ::testing::Test {
public:
ModelTestCase test_case;
};
typedef ::testing::Types<MakeLinearRegression, MakeGaussianProcess,
MakeGaussianProcessWithMean, MakeSparseGaussianProcess,
MakeSparseQRSparseGaussianProcess,
MakeAdaptedGaussianProcess, MakeRansacGaussianProcess,
MakeRansacChiSquaredGaussianProcess,
MakeRansacChiSquaredGaussianProcessWithMean,
MakeRansacAdaptedGaussianProcess, MakeNullModel>
ExampleModels;
TYPED_TEST_SUITE_P(RegressionModelTester);
enum PredictLevel { MEAN, MARGINAL, JOINT };
/*
* This TestPredictVariants struct provides different levels of
* testing depending on what sort of predictions are available.
*/
template <typename PredictionType, typename = void> struct TestPredictVariants {
PredictLevel test(const PredictionType &pred) const {
const Eigen::VectorXd pred_mean = pred.mean();
const auto get_mean = pred.template get<Eigen::VectorXd>();
EXPECT_EQ(get_mean, pred_mean);
EXPECT_GT(pred_mean.size(), 0);
return PredictLevel::MEAN;
}
PredictLevel
test_order(const PredictionType &pred,
const std::vector<PredictionType> &individual_preds) const {
const Eigen::VectorXd pred_mean = pred.mean();
EXPECT_EQ(pred_mean.size(), individual_preds.size());
for (std::size_t i = 0; i < individual_preds.size(); ++i) {
EXPECT_NEAR(pred_mean[cast::to_index(i)], individual_preds[i].mean()[0],
1e-6);
}
return PredictLevel::MEAN;
}
PredictLevel xfail(const PredictionType &pred) const {
const Eigen::VectorXd pred_mean = pred.mean();
EXPECT_EQ(pred_mean.size(), 0);
return PredictLevel::MEAN;
}
};
template <typename PredictionType>
struct TestPredictVariants<
PredictionType, std::enable_if_t<has_marginal<PredictionType>::value &&
!has_joint<PredictionType>::value>> {
PredictLevel test(const PredictionType &pred) const {
const Eigen::VectorXd pred_mean = pred.mean();
const MarginalDistribution marginal = pred.marginal();
const auto get_marginal = pred.template get<MarginalDistribution>();
EXPECT_EQ(get_marginal, marginal);
EXPECT_LE((pred_mean - marginal.mean).norm(), 1e-8);
return PredictLevel::MARGINAL;
}
PredictLevel
test_order(const PredictionType &pred,
const std::vector<PredictionType> &individual_preds) const {
const MarginalDistribution pred_marginal = pred.marginal();
EXPECT_EQ(pred_marginal.size(), individual_preds.size());
for (std::size_t i = 0; i < individual_preds.size(); ++i) {
const auto pred_i = individual_preds[i].marginal();
EXPECT_NEAR(pred_marginal.mean[i], pred_i.mean[0], 1e-6);
EXPECT_NEAR(pred_marginal.get_diagonal(i), pred_i.get_diagonal(0), 1e-6);
}
return PredictLevel::MARGINAL;
}
PredictLevel xfail(const PredictionType &pred) const {
const Eigen::VectorXd pred_mean = pred.mean();
const MarginalDistribution marginal = pred.marginal();
EXPECT_GT((pred_mean - marginal.mean).norm(), 1e-8);
return PredictLevel::MARGINAL;
}
};
template <typename PredictionType>
struct TestPredictVariants<PredictionType,
std::enable_if_t<has_joint<PredictionType>::value>> {
PredictLevel test(const PredictionType &pred) const {
const Eigen::VectorXd pred_mean = pred.mean();
const MarginalDistribution marginal = pred.marginal();
EXPECT_LE((pred_mean - marginal.mean).norm(), 1e-8);
const JointDistribution joint = pred.joint();
const auto get_joint = pred.template get<JointDistribution>();
EXPECT_EQ(get_joint, joint);
EXPECT_LE((pred_mean - joint.mean).norm(), 1e-8);
EXPECT_LE(
(marginal.covariance.diagonal() - joint.covariance.diagonal()).norm(),
1e-8);
return PredictLevel::JOINT;
}
PredictLevel
test_order(const PredictionType &pred,
const std::vector<PredictionType> &individual_preds) const {
const JointDistribution pred_joint = pred.joint();
EXPECT_EQ(pred_joint.size(), individual_preds.size());
for (std::size_t i = 0; i < individual_preds.size(); ++i) {
const auto pred_i = individual_preds[i].joint();
EXPECT_NEAR(pred_joint.mean[cast::to_index(i)], pred_i.mean[0], 1e-6);
EXPECT_NEAR(pred_joint.get_diagonal(cast::to_index(i)),
pred_i.get_diagonal(0), 1e-6);
}
return PredictLevel::JOINT;
}
PredictLevel xfail(const PredictionType &pred) const {
const Eigen::VectorXd pred_mean = pred.mean();
const MarginalDistribution marginal = pred.marginal();
const JointDistribution joint = pred.joint();
bool mean_is_close = (pred_mean - joint.mean).norm() <= 1e-8;
bool variance_is_close =
(marginal.covariance.diagonal() - joint.covariance.diagonal()).norm() <=
1e-8;
EXPECT_FALSE(mean_is_close && variance_is_close);
return PredictLevel::JOINT;
}
};
template <typename PredictionType>
void expect_predict_variants_consistent(const PredictionType &pred) {
TestPredictVariants<PredictionType> tester;
const auto level = tester.test(pred);
// Just in case the traits above don't work.
if (has_mean<PredictionType>::value) {
EXPECT_GE(level, PredictLevel::MEAN);
}
if (has_marginal<PredictionType>::value) {
EXPECT_GE(level, PredictLevel::MARGINAL);
}
if (has_joint<PredictionType>::value) {
EXPECT_GE(level, PredictLevel::JOINT);
}
}
template <typename PredictionType>
void expect_predict_variants_inconsistent(const PredictionType &pred) {
TestPredictVariants<PredictionType> tester;
const auto level = tester.xfail(pred);
// Just in case the traits above don't work.
if (has_mean<PredictionType>::value) {
EXPECT_GE(level, PredictLevel::MEAN);
}
if (has_marginal<PredictionType>::value) {
EXPECT_GE(level, PredictLevel::MARGINAL);
}
if (has_joint<PredictionType>::value) {
EXPECT_GE(level, PredictLevel::JOINT);
}
}
} // namespace albatross