-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
99 lines (77 loc) · 2.78 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import torch
from tqdm import tqdm
from utils import stochastic_integral
def train_val(
dataset,
model,
criterion,
optimizer,
epochs,
indices,
val_indices,
scheduler=None,
metric=None,
val_every=1,
max_norm=10,
):
losses, metrics, val_losses = [], [], []
for epoch in range(epochs):
model.train()
running_loss = 0
running_metric = 0
with tqdm(indices, unit="batch") as tepoch:
for i in tepoch:
tepoch.set_description(f"Epoch {epoch}")
if dataset.vol_feature:
x, vol, x_inc, payoff, price = dataset[i]
else:
x, x_inc, payoff, price = dataset[i]
optimizer.zero_grad()
if dataset.vol_feature:
output = model(x, vol)
else:
output = model(x)
if model.learn_price:
output, price = output
si = stochastic_integral(x_inc, output)
loss = criterion((price.squeeze() + si).float(), payoff.float())
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=max_norm)
optimizer.step()
met = metric(price + si, payoff).item()
running_metric += met
running_loss += loss.item()
if metric is not None:
tepoch.set_postfix(
{
"loss": loss.item(),
"metric": met,
}
)
else:
tepoch.set_postfix(loss=loss.item())
if scheduler is not None:
scheduler.step()
losses.append(running_loss / len(indices))
metrics.append(running_metric / len(indices))
if epoch % val_every == 0:
model.eval()
running_val_loss = 0
for i in val_indices:
if dataset.vol_feature:
x, vol, x_inc, payoff, price = dataset[i]
else:
x, x_inc, payoff, price = dataset[i]
if dataset.vol_feature:
output = model(x, vol)
else:
output = model(x)
if model.learn_price:
output, price = output
si = stochastic_integral(x_inc, output)
vl = criterion((price.squeeze() + si).float(), payoff.float()).item()
running_val_loss += vl
total_val_loss = running_val_loss / len(val_indices)
val_losses.append(total_val_loss)
print(f"validation loss: {total_val_loss}")
return losses, val_losses, metrics