-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
322 lines (305 loc) · 11.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import argparse
import collections
import json
import os
import pdb
import random
import numpy as np
import torch
import transformers
from transformers import AutoModel, TrainingArguments
from transformers.utils import logging
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.model as module_arch
import trainer.trainer as module_trainer
from parse_config import ConfigParser
from trainer.trainer import BaseTrainer, BaseTrainerForQA
logger = logging.get_logger(__name__)
def main(config, args):
# fix random seeds for reproducibility
seed = config["seed"]
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
transformers.logging.set_verbosity_info()
# setup data_loader instances
if any(
[name in config["arch"]["args"]["bert_version"].lower() for name in ["roberta"]]
):
tokenizer = "roberta-base"
elif any(
[name in config["arch"]["args"]["bert_version"].lower() for name in ["bert"]]
):
tokenizer = "bert-base-cased"
elif "splinter" in config["arch"]["args"]["bert_version"].lower():
tokenizer = config["arch"]["args"]["bert_version"]
else:
try:
tokenizer = config["tokenizer"]
except KeyError:
tokenizer = config["arch"]["args"]["bert_version"]
if config["train_dataset"]["args"].get("dataset", None) is None:
train_dataset = config.init_obj(
"train_dataset", module_data, tokenizer=tokenizer, dataset=config["dataset"]
)
else:
train_dataset = config.init_obj(
"train_dataset", module_data, tokenizer=tokenizer
)
# To save time, we only sample 4096 examples for evaluation during training
if config["eval_dataset"]["args"].get("dataset", None) is None:
eval_dataset = config.init_obj(
"eval_dataset",
module_data,
tokenizer=tokenizer,
dataset=config["dataset"],
sample_num=4096,
)
else:
eval_dataset = config.init_obj(
"eval_dataset", module_data, tokenizer=tokenizer, sample_num=4096
)
if config["do_test"] != 0:
try:
if config["test_dataset"]["args"].get("dataset", None) is None:
test_dataset = config.init_obj(
"test_dataset",
module_data,
tokenizer=tokenizer,
dataset=config["dataset"],
)
else:
test_dataset = config.init_obj(
"test_dataset", module_data, tokenizer=tokenizer
)
except:
pass
if config["preprocess_only"] == 1:
exit()
# build model architecture, then print to console
model = config.init_obj("arch", module_arch)
if config["local_pretrained"] and config["use_our_pretrained"] == 1:
logger.info(f"load pretrained model from {config['local_pretrained']}")
pretrained_model = torch.load(
os.path.join(config["local_pretrained"], "pytorch_model.bin")
)
state_dict = model.state_dict()
is_mlm_model = any(
["lm_head" in k or "cls.predictions" in k for k in pretrained_model.keys()]
)
model.bert.resize_token_embeddings(
model.bert.config.vocab_size + 1
) # handle extra special token [QUESTION]
not_used = []
for k, v in pretrained_model.items():
if not k.startswith("bert"):
k = "bert." + k
if args.use_all or k.startswith("bert"):
if is_mlm_model:
if "roberta" in k:
k = k.replace("bert.roberta", "bert")
elif "tapas" in k:
k = k.replace("bert.tapas", "bert")
else:
k = k.replace("bert.bert", "bert")
if k in state_dict:
state_dict[k] = v
else:
not_used.append(k)
else:
not_used.append(k)
print("unused parameters", not_used)
model.load_state_dict(state_dict)
del pretrained_model
del state_dict
model.bert.resize_token_embeddings(
len(train_dataset.tokenizer)
) # handle extra special tokens like [DOC]
if config.resume is not None:
last_trained = torch.load(
os.path.join(config.resume.resolve().as_posix(), "pytorch_model.bin")
)
model.load_state_dict(last_trained)
del last_trained
if (
config["train_dataset"]["args"]["sample_num"] < 1
and config["train_dataset"]["args"]["sample_num"] != -1
):
config["train_dataset"]["args"]["sample_num"] = len(train_dataset)
real_batch_size = (
config["trainer"]["per_device_train_batch_size"]
* config["trainer"]["gradient_accumulation_steps"]
* config["n_gpus"]
)
step_per_epoch = int(len(train_dataset) / real_batch_size)
# Set the training steps, mostly for fewshot settings
if (
config["train_dataset"]["args"]["sample_num"] <= 2048
and config["train_dataset"]["args"]["sample_num"] != -1
):
config["trainer"].update(
{
"dataloader_num_workers": config["n_gpus"] * 2,
"seed": seed,
"output_dir": config.save_dir.resolve().as_posix(),
"logging_dir": config.log_dir.resolve().as_posix(),
"max_steps": -1 if step_per_epoch >= 20 else 200,
"warmup_steps": 20 if step_per_epoch < 20 else step_per_epoch,
"eval_steps": 50 if step_per_epoch < 20 else 3 * step_per_epoch,
"save_steps": 100 if step_per_epoch < 20 else 3 * step_per_epoch,
}
)
else:
config["trainer"].update(
{
"dataloader_num_workers": config["n_gpus"] * 2,
"seed": seed,
"output_dir": config.save_dir.resolve().as_posix(),
"logging_dir": config.log_dir.resolve().as_posix(),
"max_steps": -1,
"warmup_steps": int(config["trainer"]["warmup_steps"] * step_per_epoch),
"eval_steps": int(config["trainer"]["eval_steps"] * step_per_epoch),
"save_steps": step_per_epoch,
}
)
config["trainer"].update(
{
"load_best_model_at_end": False if config["do_test"] == 0 else True,
}
)
training_args = TrainingArguments(**config["trainer"])
extra_args = {"tokenizer": train_dataset.tokenizer}
if "splinter" in config["arch"]["args"]["bert_version"].lower():
extra_args["q_id"] = 104
collator = config.init_obj("collator", module_data, **extra_args)
trainer = config.init_obj(
"trainer_type",
module_trainer,
model=model, # the instantiated 🤗 Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=train_dataset, # training dataset
eval_dataset=eval_dataset,
data_collator=collator,
)
if config["test_only"] != 1:
if config.resume is None:
trainer.train()
else:
trainer.train(config.resume.resolve().as_posix())
trainer._save_checkpoint(trainer.model, None)
if config["eval_dataset"]["args"].get("dataset", None) is None:
full_eval_dataset = config.init_obj(
"eval_dataset", module_data, tokenizer=tokenizer, dataset=config["dataset"]
)
else:
full_eval_dataset = config.init_obj(
"eval_dataset", module_data, tokenizer=tokenizer
)
result_f = open(
os.path.join(config.save_dir.resolve().as_posix(), "results.json"), "w"
)
eval_output = trainer.predict(full_eval_dataset)
logger.info(f"----Eval Results-----\n{eval_output.metrics}")
result_f.write(f"----Eval Results-----\n{eval_output.metrics}\n")
with open(
os.path.join(config.save_dir.resolve().as_posix(), "eval_predictions.json"), "w"
) as f:
json.dump(eval_output.predictions, f)
if config["do_test"] != 0:
test_output = trainer.predict(test_dataset)
logger.info(f"-----Test Results-----\n{test_output.metrics}")
result_f.write(f"-----Test Results-----\n{test_output.metrics}\n")
with open(
os.path.join(config.save_dir.resolve().as_posix(), "test_predictions.json"),
"w",
) as f:
json.dump(test_output.predictions, f)
try:
if config["test_on_train"] != 0:
train_output = trainer.predict(train_dataset)
logger.info(f"-----Train Results-----\n{train_output.metrics}")
with open(
os.path.join(
config.save_dir.resolve().as_posix(), "train_predictions.json"
),
"w",
) as f:
json.dump(train_output.predictions, f)
except:
pass
result_f.close()
if __name__ == "__main__":
args = argparse.ArgumentParser(description="PyTorch Template")
args.add_argument(
"-c",
"--config",
default=None,
type=str,
help="config file path (default: None)",
)
args.add_argument(
"-r",
"--resume",
default=None,
type=str,
help="path to latest checkpoint (default: None)",
)
args.add_argument(
"-d",
"--device",
default=None,
type=str,
help="indices of GPUs to enable (default: all)",
)
args.add_argument("--run_id", default=0, type=str, help="run id")
args.add_argument(
"--use_all", action="store_true", help="use all pretrained headers"
)
args.add_argument("--overwrite", action="store_true")
# custom cli options to modify configuration from default values given in json file.
CustomArgs = collections.namedtuple("CustomArgs", "flags type target")
options = [
CustomArgs(
["--lr", "--learning_rate"], type=float, target="trainer;learning_rate"
),
CustomArgs(["--epochs"], type=int, target="trainer;num_train_epochs"),
CustomArgs(["--eval_steps"], type=float, target="trainer;eval_steps"),
CustomArgs(["--warmup_steps"], type=float, target="trainer;warmup_steps"),
CustomArgs(
["--bs", "--batch_size"],
type=int,
target="trainer;per_device_train_batch_size",
),
CustomArgs(["--acc"], type=int, target="trainer;gradient_accumulation_steps"),
CustomArgs(["--seed", "--random_seed"], type=int, target="seed"),
CustomArgs(
["--sample", "--train_sample_num"],
type=float,
target="train_dataset;args;sample_num",
),
CustomArgs(["--neg_ratio"], type=float, target="train_dataset;args;neg_ratio"),
CustomArgs(["--use_ours"], type=int, target="use_our_pretrained"),
CustomArgs(["--preprocess_only"], type=int, target="preprocess_only"),
CustomArgs(["--do_test"], type=int, target="do_test"),
CustomArgs(["--test_only"], type=int, target="test_only"),
CustomArgs(["--expr", "--expr_name"], type=str, target="name"),
CustomArgs(["--dataset"], type=str, target="dataset"),
CustomArgs(
["--pretrain", "--pretrain_model_type"],
type=str,
target="arch;args;bert_version",
),
CustomArgs(
["--arch"],
type=str,
target="arch;type",
),
CustomArgs(["--local_pretrained"], type=str, target="local_pretrained"),
]
config = ConfigParser.from_args(args, options)
args, _ = args.parse_known_args()
main(config, args)