-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpretrain.py
126 lines (109 loc) · 3.6 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import argparse
import collections
import os
import pdb
import random
import numpy as np
import torch
import transformers
from tqdm import tqdm
from transformers import TrainingArguments
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.model as module_arch
from parse_config import ConfigParser
from trainer.trainer import BaseTrainer
def main(index=0):
args = argparse.ArgumentParser(description="PyTorch Template")
args.add_argument(
"-c",
"--config",
default=None,
type=str,
help="config file path (default: None)",
)
args.add_argument(
"-r",
"--resume",
default=None,
type=str,
help="path to latest checkpoint (default: None)",
)
args.add_argument(
"-d",
"--device",
default=None,
type=str,
help="indices of GPUs to enable (default: all)",
)
args.add_argument("--run_id", default=0, type=str, help="run id")
args.add_argument("--overwrite", action="store_true")
# custom cli options to modify configuration from default values given in json file.
CustomArgs = collections.namedtuple("CustomArgs", "flags type target")
options = [
CustomArgs(
["--lr", "--learning_rate"], type=float, target="trainer;learning_rate"
),
CustomArgs(
["--bs", "--batch_size"], type=int, target="train_dataset;args;batch_size"
),
]
config = ConfigParser.from_args(args, options, index=index)
# fix random seeds for reproducibility
seed = config["seed"]
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
transformers.logging.set_verbosity_info()
# setup data_loader instances
config["train_dataset"]["args"]["length"] = (
config["train_dataset"]["args"]["length"]
// config["train_dataset"]["args"]["batch_size"]
)
train_dataset = config.init_obj(
"train_dataset",
module_data,
n_gpus=config["n_gpus"],
tokenizer=config["arch"]["args"]["bert_version"],
mlm_probability=config["mlm_probability"],
index=index,
).with_length(config["train_dataset"]["args"]["length"])
# build model architecture, then print to console
model = config.init_obj(
"arch", module_arch, vocab_size=len(train_dataset.tokenizer)
)
if config.resume is not None:
last_trained = torch.load(
os.path.join(config.resume.resolve().as_posix(), "pytorch_model.bin")
)
model.load_state_dict(last_trained)
del last_trained
config["trainer"].update(
{
"per_device_train_batch_size": config["train_dataset"]["args"][
"batch_size"
],
"dataloader_num_workers": int(config["n_gpus"]*1.5),
"seed": seed,
"output_dir": config.save_dir.resolve().as_posix(),
"logging_dir": config.log_dir.resolve().as_posix(),
}
)
training_args = TrainingArguments(**config["trainer"])
trainer = BaseTrainer(
model=model, # the instantiated 🤗 Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=train_dataset, # training dataset
)
if config.resume is None:
trainer.train()
else:
trainer.train(config.resume.resolve().as_posix())
def _mp_fn(index):
# For xla_spawn (TPUs)
main(index)
if __name__ == "__main__":
main()