-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval.py
893 lines (778 loc) · 44.8 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
import sys
import copy
import torch
import numpy as np
from torch.nn import Sequential, Linear, ReLU, CrossEntropyLoss
from bound_layers import BoundSequential, BoundLinear, BoundConv2d, BoundDataParallel
# from gpu_profile import gpu_profile
import time
from datetime import datetime
from eps_scheduler import EpsilonScheduler
from config import load_config, get_path, config_modelloader, config_dataloader
from argparser import argparser
from train import AverageMeter, Logger
# sys.settrace(gpu_profile)
from pgd_eval import evaluate_pgd, evaluate_pgd_n
import seaborn as sns
import matplotlib.pyplot as plt
DEBUGG = False
BREAK = False
def Train_calloss(model, t, i, data, labels, loader, eps,end_eps, max_eps, norm, logger, verbose, train, method, cal_grad = False, lower_d_list2=[],beta=1.0, kappa=0.0,cal_lb=False, frozen =5, **kwargs):
# if train=True, use training mode
# if train=False, use test mode, no back prop
num_class = 10
batch_multiplier = kwargs.get("batch_multiplier", 1)
if cal_grad:
model.train()
else:
model.eval()
# pregenerate the array for specifications, will be used for scatter
sa = np.zeros((num_class, num_class - 1), dtype = np.int32)
for ii in range(sa.shape[0]):
for j in range(sa.shape[1]):
if j < ii:
sa[ii][j] = j
else:
sa[ii][j] = j + 1
sa = torch.LongTensor(sa)
batch_size = loader.batch_size * batch_multiplier
if batch_multiplier > 1 and train:
logger.log('Warning: Large batch training. The equivalent batch size is {} * {} = {}.'.format(batch_multiplier, loader.batch_size, batch_size))
# per-channel std and mean
std = torch.tensor(loader.std).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
mean = torch.tensor(loader.mean).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
model_range = 0.0
#end_eps = eps_scheduler.get_eps(t+1, 0)
if end_eps < np.finfo(np.float32).tiny:
#logger.log('eps {} close to 0, using natural training'.format(end_eps))
method = "natural"
########################## for i, (data, labels) in enumerate(loader):
start = time.time()
#eps = eps_scheduler.get_eps(t, int(i//batch_multiplier))
# generate specifications
c = torch.eye(num_class).type_as(data)[labels].unsqueeze(1) - torch.eye(num_class).type_as(data).unsqueeze(0)
# remove specifications to self
I = (~(labels.data.unsqueeze(1) == torch.arange(num_class).type_as(labels.data).unsqueeze(0)))
c = (c[I].view(data.size(0),num_class-1,num_class))
# scatter matrix to avoid compute margin to self
sa_labels = sa[labels]
# storing computed lower bounds after scatter
lb_s = torch.zeros(data.size(0), num_class)
ub_s = torch.zeros(data.size(0), num_class)
# FIXME: Assume unnormalized data is from range 0 - 1
if kwargs["bounded_input"]:
if norm != np.inf:
raise ValueError("bounded input only makes sense for Linf perturbation. "
"Please set the bounded_input option to false.")
data_max = torch.reshape((1. - mean) / std, (1, -1, 1, 1))
data_min = torch.reshape((0. - mean) / std, (1, -1, 1, 1))
data_ub = torch.min(data + (eps / std), data_max)
data_lb = torch.max(data - (eps / std), data_min)
else:
if norm == np.inf:
data_ub = data.cpu() + (eps / std)
data_lb = data.cpu() - (eps / std)
else:
# For other norms, eps will be used instead.
data_ub = data_lb = data
if list(model.parameters())[0].is_cuda:
data = data.cuda()
data_ub = data_ub.cuda()
data_lb = data_lb.cuda()
labels = labels.cuda()
c = c.cuda()
sa_labels = sa_labels.cuda()
lb_s = lb_s.cuda()
ub_s = ub_s.cuda()
# convert epsilon to a tensor
eps_tensor = data.new(1)
eps_tensor[0] = eps
# omit the regular cross entropy, since we use robust error
output = model(data, method_opt="forward", disable_multi_gpu = (method == "natural"))
regular_ce = CrossEntropyLoss()(output, labels)
# get range statistic
model_range = output.max().detach().cpu().item() - output.min().detach().cpu().item()
if verbose or method != "natural":
if kwargs["bound_type"] == "convex-adv":
# Wong and Kolter's bound, or equivalently Fast-Lin
if kwargs["convex-proj"] is not None:
proj = kwargs["convex-proj"]
if norm == np.inf:
norm_type = "l1_median"
norm_type = "l2_normal"
else:
raise(ValueError("Unsupported norm {} for convex-adv".format(norm)))
else:
proj = None
if norm == np.inf:
norm_type = "l1"
elif norm == 2:
norm_type = "l2"
else:
raise(ValueError("Unsupported norm {} for convex-adv".format(norm)))
if loader.std == [1] or loader.std == [1, 1, 1]:
convex_eps = eps
else:
convex_eps = eps / np.mean(loader.std)
# for CIFAR we are roughly / 0.2
# FIXME this is due to a bug in convex_adversarial, we cannot use per-channel eps
if norm == np.inf:
# bounded input is only for Linf
if kwargs["bounded_input"]:
# FIXME the bounded projection in convex_adversarial has a bug, data range must be positive
assert loader.std == [1,1,1] or loader.std == [1]
data_l = 0.0
data_u = 1.0
else:
data_l = -np.inf
data_u = np.inf
else:
data_l = data_u = None
f = DualNetwork(model, data, convex_eps, proj = proj, norm_type = norm_type, bounded_input = kwargs["bounded_input"], data_l = data_l, data_u = data_u)
lb = f(c)
elif kwargs["bound_type"] == "interval":
ub, lb, relu_activity, unstable, dead, alive = model(norm=norm, x_U=data_ub, x_L=data_lb, eps=eps, C=c, method_opt="interval_range")
elif kwargs["bound_type"] == "crown-full":
_, _, lb, _ = model(norm=norm, x_U=data_ub, x_L=data_lb, eps=eps, C=c, upper=False, lower=True, method_opt="full_backward_range")
unstable = dead = alive = relu_activity = torch.tensor([0])
elif kwargs["bound_type"] == "crown-interval":
# Enable multi-GPU only for the computationally expensive CROWN-IBP bounds,
# not for regular forward propagation and IBP because the communication overhead can outweigh benefits, giving little speedup.
#######0730
#print('cal_loss',norm, data_ub[0][0], data_lb[0][0], eps, labels[:3])
ub, ilb, relu_activity, unstable, dead, alive = model(norm=norm, x_U=data_ub, x_L=data_lb, eps=eps, C=c, method_opt="interval_range")
if beta < 1e-5:
lb = ilb
else:
if kwargs["runnerup_only"]:
# regenerate a smaller c, with just the runner-up prediction
# mask ground truthlabel output, select the second largest class
# print(output)
# torch.set_printoptions(threshold=5000)
masked_output = output.detach().scatter(1, labels.unsqueeze(-1), -100)
# print(masked_output)
# location of the runner up prediction
runner_up = masked_output.max(1)[1]
# print(runner_up)
# print(labels)
# get margin from the groud-truth to runner-up only
runnerup_c = torch.eye(num_class).type_as(data)[labels]
# print(runnerup_c)
# set the runner up location to -
runnerup_c.scatter_(1, runner_up.unsqueeze(-1), -1)
runnerup_c = runnerup_c.unsqueeze(1).detach()
# print(runnerup_c)
# get the bound for runnerup_c
_, _, clb, bias = model(norm=norm, x_U=data_ub, x_L=data_lb, eps=eps, C=c, method_opt="backward_range")
clb = clb.expand(clb.size(0), num_class - 1)
else:
# get the CROWN bound using interval bounds
_, _, clb, bias = model(norm=norm, x_U=data_ub, x_L=data_lb, eps=eps, C=c, method_opt="backward_range",lower_d_list2=lower_d_list2)
# how much better is crown-ibp better than ibp?
diff = (clb - ilb).sum().item()
# lb = torch.max(lb, clb)
lb = clb * beta + ilb * (1 - beta)
elif kwargs["bound_type"] == "crown-interval-frozen":
# Enable multi-GPU only for the computationally expensive CROWN-IBP bounds,
# not for regular forward propagation and IBP because the communication overhead can outweigh benefits, giving little speedup.
ub, ilb, relu_activity, unstable, dead, alive = model(norm=norm, x_U=data_ub, x_L=data_lb, eps=eps, C=c, method_opt="interval_range")
if beta < 1e-5:
lb = ilb
else:
# get the CROWN bound using interval bounds
_, _, clb, bias = model(norm=norm, x_U=data_ub, x_L=data_lb, eps=eps, C=c, method_opt="backward_range_frozen",lower_d_list2=lower_d_list2, frozen=frozen)
diff = (clb - ilb).sum().item()
lb = clb * beta + ilb * (1 - beta)
# print(lb.shape)
else:
raise RuntimeError("Unknown bound_type " + kwargs["bound_type"])
lb = lb_s.scatter(1, sa_labels, lb)
robust_ce = CrossEntropyLoss()(-lb, labels)
if method == "robust":
loss = robust_ce
elif method == "robust_activity":
loss = robust_ce + kwargs["activity_reg"] * relu_activity.sum()
elif method == "natural":
loss = regular_ce
robust_ce = loss
elif method == "robust_natural":
loss = (1-kappa) * robust_ce + kappa * regular_ce
else:
raise ValueError("Unknown method " + method)
if train and kwargs["l1_reg"] > np.finfo(np.float32).tiny:
reg = kwargs["l1_reg"]
l1_loss = 0.0
for name, param in model.named_parameters():
if 'bias' not in name:
l1_loss = l1_loss + torch.sum(torch.abs(param))
l1_loss = reg * l1_loss
loss = loss + l1_loss
if cal_lb:
return loss, robust_ce, clb, bias
else:
return loss, robust_ce
def Train(model, t, loader, eps_scheduler, max_eps, norm, logger, verbose, train, opt, method, cal_loss=False, n_loss=2,max_loss=4, min_loss=0.5, cal_grad = False, config = None, cal_grad_norm=False,start_beta = 1.0,start_kappa=1.0, lr_consist=False,bound_opt_eval=None, frozen=13, **kwargs):
# if train=True, use training mode
# if train=False, use test mode, no back prop
if model.bound_opts['ours'] and train is False :
torch.set_grad_enabled(True)
num_class = 10
losses = AverageMeter()
l1_losses = AverageMeter()
errors = AverageMeter()
robust_errors = AverageMeter()
regular_ce_losses = AverageMeter()
robust_ce_losses = AverageMeter()
relu_activities = AverageMeter()
bound_bias = AverageMeter()
bound_diff = AverageMeter()
unstable_neurons = AverageMeter()
dead_neurons = AverageMeter()
alive_neurons = AverageMeter()
batch_time = AverageMeter()
batch_multiplier = kwargs.get("batch_multiplier", 1)
All_list=[]
loss_list=[]
loss_points = np.logspace(np.log10(min_loss), np.log10(max_loss), n_loss, endpoint=True)
loss_points = np.concatenate((np.zeros(1),loss_points,np.ones(1)), axis=0)
ReLU_lower_bs = AverageMeter()
not_ReLU_lower_bs = AverageMeter()
A_xs = AverageMeter()
A_norms = AverageMeter()
if train:
model.train()
else:
model.eval()
sa = np.zeros((num_class, num_class - 1), dtype = np.int32)
for i in range(sa.shape[0]):
for j in range(sa.shape[1]):
if j < i:
sa[i][j] = j
else:
sa[i][j] = j + 1
sa = torch.LongTensor(sa)
batch_size = loader.batch_size * batch_multiplier
if batch_multiplier > 1 and train:
logger.log('Warning: Large batch training. The equivalent batch size is {} * {} = {}.'.format(batch_multiplier, loader.batch_size, batch_size))
std = torch.tensor(loader.std).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
mean = torch.tensor(loader.mean).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
model_range = 0.0
end_eps = eps_scheduler.get_eps(t+1, 0)
if end_eps < np.finfo(np.float32).tiny:
logger.log('eps {} close to 0, using natural training'.format(end_eps))
method = "natural"
for i, (data, labels) in enumerate(loader):
if i>0 and BREAK:
break
start = time.time()
eps = eps_scheduler.get_eps(t, int(i//batch_multiplier))
crown_final_beta = kwargs['final-beta'] #
natural_final_factor = kwargs["final-kappa"] #
beta = start_beta - (1.0-(max_eps-eps)/max_eps)*(start_beta-crown_final_beta) #
kappa = start_kappa - (1.0-(max_eps-eps)/max_eps)*(start_kappa-natural_final_factor) #
if train and i % batch_multiplier == 0:
opt.zero_grad()
# generate specifications
c = torch.eye(num_class).type_as(data)[labels].unsqueeze(1) - torch.eye(num_class).type_as(data).unsqueeze(0)
# remove specifications to self
I = (~(labels.data.unsqueeze(1) == torch.arange(num_class).type_as(labels.data).unsqueeze(0)))
c = (c[I].view(data.size(0),num_class-1,num_class))
# scatter matrix to avoid compute margin to self
sa_labels = sa[labels]
# storing computed lower bounds after scatter
lb_s = torch.zeros(data.size(0), num_class)
ub_s = torch.zeros(data.size(0), num_class)
# FIXME: Assume unnormalized data is from range 0 - 1
if kwargs["bounded_input"]:
if norm != np.inf:
raise ValueError("bounded input only makes sense for Linf perturbation. "
"Please set the bounded_input option to false.")
data_max = torch.reshape((1. - mean) / std, (1, -1, 1, 1))
data_min = torch.reshape((0. - mean) / std, (1, -1, 1, 1))
data_ub = torch.min(data + (eps / std), data_max)
data_lb = torch.max(data - (eps / std), data_min)
else:
if norm == np.inf:
data_ub = data + (eps / std)
data_lb = data - (eps / std)
else:
# For other norms, eps will be used instead.
data_ub = data_lb = data
if list(model.parameters())[0].is_cuda:
data = data.cuda()
data_ub = data_ub.cuda()
data_lb = data_lb.cuda()
labels = labels.cuda()
c = c.cuda()
sa_labels = sa_labels.cuda()
lb_s = lb_s.cuda()
ub_s = ub_s.cuda()
# convert epsilon to a tensor
eps_tensor = data.new(1)
eps_tensor[0] = eps
# omit the regular cross entropy, since we use robust error
output = model(data, method_opt="forward", disable_multi_gpu = (method == "natural"))
regular_ce = CrossEntropyLoss()(output, labels)
regular_ce_losses.update(regular_ce.cpu().detach().numpy(), data.size(0))
errors.update(torch.sum(torch.argmax(output, dim=1)!=labels).cpu().detach().numpy()/data.size(0), data.size(0))
# get range statistic
model_range = output.max().detach().cpu().item() - output.min().detach().cpu().item()
'''
torch.set_printoptions(threshold=5000)
print('prediction: ', output)
ub, lb, _, _, _, _ = model(norm=norm, x_U=data_ub, x_L=data_lb, eps=eps, C=c, method_opt="interval_range")
lb = lb_s.scatter(1, sa_labels, lb)
ub = ub_s.scatter(1, sa_labels, ub)
print('interval ub: ', ub)
print('interval lb: ', lb)
ub, _, lb, _ = model(norm=norm, x_U=data_ub, x_L=data_lb, eps=eps, C=c, upper=True, lower=True, method_opt="backward_range")
lb = lb_s.scatter(1, sa_labels, lb)
ub = ub_s.scatter(1, sa_labels, ub)
print('crown-ibp ub: ', ub)
print('crown-ibp lb: ', lb)
ub, _, lb, _ = model(norm=norm, x_U=data_ub, x_L=data_lb, eps=eps, C=c, upper=True, lower=True, method_opt="full_backward_range")
lb = lb_s.scatter(1, sa_labels, lb)
ub = ub_s.scatter(1, sa_labels, ub)
print('full-crown ub: ', ub)
print('full-crown lb: ', lb)
input()
'''
if verbose or method != "natural":
if kwargs["bound_type"] == "convex-adv":
# Wong and Kolter's bound, or equivalently Fast-Lin
if kwargs["convex-proj"] is not None:
proj = kwargs["convex-proj"]
if norm == np.inf:
norm_type = "l1_median"
elif norm == 2:
norm_type = "l2_normal"
else:
raise(ValueError("Unsupported norm {} for convex-adv".format(norm)))
else:
proj = None
if norm == np.inf:
norm_type = "l1"
elif norm == 2:
norm_type = "l2"
else:
raise(ValueError("Unsupported norm {} for convex-adv".format(norm)))
if loader.std == [1] or loader.std == [1, 1, 1]:
convex_eps = eps
else:
convex_eps = eps / np.mean(loader.std)
# for CIFAR we are roughly / 0.2
# FIXME this is due to a bug in convex_adversarial, we cannot use per-channel eps
if norm == np.inf:
# bounded input is only for Linf
if kwargs["bounded_input"]:
# FIXME the bounded projection in convex_adversarial has a bug, data range must be positive
assert loader.std == [1,1,1] or loader.std == [1]
data_l = 0.0
data_u = 1.0
else:
data_l = -np.inf
data_u = np.inf
else:
data_l = data_u = None
f = DualNetwork(model, data, convex_eps, proj = proj, norm_type = norm_type, bounded_input = kwargs["bounded_input"], data_l = data_l, data_u = data_u)
lb = f(c)
elif kwargs["bound_type"] == "interval":
ub, lb, relu_activity, unstable, dead, alive = model(norm=norm, x_U=data_ub, x_L=data_lb, eps=eps, C=c, method_opt="interval_range")
elif kwargs["bound_type"] == "crown-full":
_, _, lb, _ = model(norm=norm, x_U=data_ub, x_L=data_lb, eps=eps, C=c, upper=False, lower=True, method_opt="full_backward_range")
unstable = dead = alive = relu_activity = torch.tensor([0])
elif kwargs["bound_type"] == "crown-interval":
# Enable multi-GPU only for the computationally expensive CROWN-IBP bounds,
# not for regular forward propagation and IBP because the communication overhead can outweigh benefits, giving little speedup.
ub, ilb, relu_activity, unstable, dead, alive = model(norm=norm, x_U=data_ub, x_L=data_lb, eps=eps, C=c, method_opt="interval_range")
if beta < 1e-5:
lb = ilb
else:
if kwargs["runnerup_only"]:
# regenerate a smaller c, with just the runner-up prediction
# mask ground truthlabel output, select the second largest class
# print(output)
# torch.set_printoptions(threshold=5000)
masked_output = output.detach().scatter(1, labels.unsqueeze(-1), -100)
# print(masked_output)
# location of the runner up prediction
runner_up = masked_output.max(1)[1]
# print(runner_up)
# print(labels)
# get margin from the groud-truth to runner-up only
runnerup_c = torch.eye(num_class).type_as(data)[labels]
# print(runnerup_c)
# set the runner up location to -
runnerup_c.scatter_(1, runner_up.unsqueeze(-1), -1)
runnerup_c = runnerup_c.unsqueeze(1).detach()
# print(runnerup_c)
# get the bound for runnerup_c
_, _, clb, bias = model(norm=norm, x_U=data_ub, x_L=data_lb, eps=eps, C=c, method_opt="backward_range")
clb = clb.expand(clb.size(0), num_class - 1)
else:
# get the CROWN bound using interval bounds
_, _, clb, bias = model(norm=norm, x_U=data_ub, x_L=data_lb, eps=eps, C=c, method_opt="backward_range")
# bound_bias.update(bias.sum() / data.size(0))
lb = clb * beta + ilb * (1 - beta)
#
elif kwargs["bound_type"] == "crown-interval-frozen":
# Enable multi-GPU only for the computationally expensive CROWN-IBP bounds,
# not for regular forward propagation and IBP because the communication overhead can outweigh benefits, giving little speedup.
ub, ilb, relu_activity, unstable, dead, alive = model(norm=norm, x_U=data_ub, x_L=data_lb, eps=eps, C=c, method_opt="interval_range")
if beta < 1e-5:
lb = ilb
else:
# get the CROWN bound using interval bounds
_, _, clb, bias = model(norm=norm, x_U=data_ub, x_L=data_lb, eps=eps, C=c, method_opt="backward_range_frozen", frozen=frozen)
diff = (clb - ilb).sum().item()
lb = clb * beta + ilb * (1 - beta)
else:
raise RuntimeError("Unknown bound_type " + kwargs["bound_type"])
lb = lb_s.scatter(1, sa_labels, lb)
robust_ce = CrossEntropyLoss()(-lb, labels)
if kwargs["bound_type"] != "convex-adv":
relu_activities.update(relu_activity.sum().detach().cpu().item() / data.size(0), data.size(0))
unstable_neurons.update(unstable.sum().detach().cpu().item() / data.size(0), data.size(0))
dead_neurons.update(dead.sum().detach().cpu().item() / data.size(0), data.size(0))
alive_neurons.update(alive.sum().detach().cpu().item() / data.size(0), data.size(0))
if method == "robust":
loss = robust_ce
elif method == "robust_activity":
loss = robust_ce + kwargs["activity_reg"] * relu_activity.sum()
elif method == "natural":
loss = regular_ce
robust_ce = loss
elif method == "robust_natural":
loss = (1-kappa) * robust_ce + kappa * regular_ce
else:
raise ValueError("Unknown method " + method)
if train and kwargs["l1_reg"] > np.finfo(np.float32).tiny:
reg = kwargs["l1_reg"]
l1_loss = 0.0
for name, param in model.named_parameters():
if 'bias' not in name:
l1_loss = l1_loss + torch.sum(torch.abs(param))
l1_loss = reg * l1_loss
loss = loss + l1_loss
l1_losses.update(l1_loss.cpu().detach().numpy(), data.size(0))
##update a
if method != "natural" and model.bound_opts['ours'] and beta >= 1e-5:
loss, robust_ce, clb, bias=Train_calloss_ours(loss,robust_ce,model, t, i, data, labels, loader, eps,end_eps, max_eps, norm, logger, verbose, train, method, beta=beta, kappa=kappa,cal_grad=True,cal_lb=True,multistep=False,frozen=frozen, **kwargs)
if (verbose or method != "natural") and kwargs["bound_type"] == "crown-interval" and beta >= 1e-5 and not kwargs["runnerup_only"]:
bound_bias.update(bias.sum() / data.size(0))
ReLU_lower_bs.update(model.ReLU_lower_b.sum(), data.size(0))
if (model.ReLU_lower_b>0).sum()>0:
print("There is positive part in the ReLU_lower_bs!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
not_ReLU_lower_bs.update(model.not_ReLU_lower_b.sum(), data.size(0))
A_norms.update(model.A_norm.sum(), data.size(0))
A_xs.update(model.A_x.sum(), data.size(0))
diff = (clb - ilb).sum().item()
bound_diff.update(diff / data.size(0), data.size(0))
lb = clb * beta + ilb * (1 - beta)
original_A_sign = model.lower_A.sign()
All=(model.ReLU_lower_b.sum()+model.A_x.sum()+model.not_ReLU_lower_b.sum()+model.A_norm.sum())/data.size(0)
All_list.append(All.item())
loss_list.append(loss.item())
elif (verbose or method != "natural") and kwargs["bound_type"] == "crown-interval-frozen" and beta >= 1e-5 and not kwargs["runnerup_only"]:
diff = (clb - ilb).sum().item()
lb = clb * beta + ilb * (1 - beta)
if train:
opt.zero_grad()
loss.backward()
if cal_loss and (t*len(loader)+i)%100 ==0:
model_list = [qq for qq in model.state_dict().keys()]
dict_all_tmp = {}
lr = opt.state_dict()['param_groups'][0]['lr']
original_grad = []
for point in loss_points:
dict_all_tmp[point]={}
for v, param in enumerate(model.parameters()):
param_grad = param.grad.data.detach()
original_grad.append(param_grad.view(1,-1)) ######flatten
for point in loss_points:
param_tmp = param.data.detach() - point*lr*param_grad
dict_all_tmp[point][model_list[v]] = param_tmp
MSE_grad_norm = torch.zeros(1).cuda()
for point in loss_points:
if config:
global_train_config = config["training_params"]
train_config = copy.deepcopy(global_train_config)
models, model_names = config_modelloader(config)
model_loss_clean = BoundSequential.convert(models[0], train_config["method_params"]["bound_opts"])
model_loss = model_loss_clean.cuda()
model_loss.load_state_dict(dict_all_tmp[point])
opt_loss = optim.SGD(model_loss.parameters(), lr=0.00)
opt_loss.zero_grad()
if method != "natural" and model.bound_opts['ours'] and beta >= 1e-5:
loss_tmp, Rloss_tmp= Train_calloss(model_loss, t, i, data, labels, loader, eps,end_eps, max_eps, norm, logger, verbose, train, method,cal_grad=cal_grad, beta=beta,kappa=kappa, cal_lb=False,frozen=frozen,**kwargs)
loss_tmp, Rloss_tmp, clb, bias=Train_calloss_ours(loss_tmp,Rloss_tmp,model_loss, t, i, data, labels, loader, eps,end_eps, max_eps, norm, logger, verbose, train, method, beta=beta, kappa=kappa,cal_grad=True,cal_lb=True,multistep=False,frozen=frozen, **kwargs) # if you want to test multistep, then set multistep=True
else:
loss_tmp, Rloss_tmp= Train_calloss(model_loss, t, i, data, labels, loader, eps,end_eps, max_eps, norm, logger, verbose, train, method,cal_grad=cal_grad, beta=beta,kappa=kappa, cal_lb=False,frozen=frozen,**kwargs)
loss_tmp.backward()
logger.loss(float(loss_tmp.data.cpu()), end='\t')
model_loss_grad = []
if cal_grad:
for v, param_loss in enumerate(model_loss.parameters()):
model_loss_grad.append(param_loss.grad.data.view(1,-1))
MSE_grad_tmp = torch.nn.MSELoss(reduction='mean')(torch.cat(original_grad,dim=1),torch.cat(model_loss_grad,dim=1)).sqrt()
cosine_grad_tmp = torch.nn.CosineSimilarity(dim=1)(torch.cat(original_grad,dim=1),torch.cat(model_loss_grad,dim=1))
if method != "natural" and kwargs["bound_type"] == "crown-interval" and beta >= 1e-5:
A_sign_tmp = torch.nn.L1Loss()( original_A_sign , model_loss.lower_A.sign())
logger.a_sign(float(A_sign_tmp.data.cpu()), end='\t')
if cal_grad_norm:
MSE_grad_norm = torch.max(MSE_grad_tmp/(original_grad[0].norm()*lr*point),MSE_grad_norm)
logger.grad(float(MSE_grad_tmp.data.cpu()), end='\t')
logger.cosine(float(cosine_grad_tmp.data.cpu()), end='\t')
del model_loss
del MSE_grad_tmp, loss_tmp, Rloss_tmp
del model_loss_clean
if cal_grad_norm:
logger.grad_norm(float(MSE_grad_norm.data.cpu()), end='\t')
logger.loss('\n', end='')
logger.grad('\n', end='')
logger.cosine('\n', end='')
logger.grad_norm('\n', end='')
if method != "natural" and kwargs["bound_type"] == "crown-interval" and beta >= 1e-5:
logger.a_sign('\n', end='')
model.train()
if i % batch_multiplier == 0 or i == len(loader) - 1:
opt.step()
if cal_loss and (t*len(loader)+i)%100 ==0:
opt_loss.step()
losses.update(loss.cpu().detach().numpy(), data.size(0))
if verbose or method != "natural":
robust_ce_losses.update(robust_ce.cpu().detach().numpy(), data.size(0))
# robust_ce_losses.update(robust_ce, data.size(0))
robust_errors.update(torch.sum((lb<0).any(dim=1)).cpu().detach().numpy() / data.size(0), data.size(0))
batch_time.update(time.time() - start)
all_val = ReLU_lower_bs.val+A_xs.val+not_ReLU_lower_bs.val+A_norms.val
all_avg = ReLU_lower_bs.avg+A_xs.avg+not_ReLU_lower_bs.avg+A_norms.avg
if i % 50 == 0 and train:
logger.log( '[{:2d}:{:4d}]: eps {:6f} '
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Total Loss {loss.val:.4f} ({loss.avg:.4f}) '
'L1 Loss {l1_loss.val:.4f} ({l1_loss.avg:.4f}) '
'CE {regular_ce_loss.val:.4f} ({regular_ce_loss.avg:.4f}) '
'RCE {robust_ce_loss.val:.4f} ({robust_ce_loss.avg:.4f}) '
'Err {errors.val:.4f} ({errors.avg:.4f}) '
'Rob Err {robust_errors.val:.4f} ({robust_errors.avg:.4f}) '
'Uns {unstable.val:.1f} ({unstable.avg:.1f}) '
'Dead {dead.val:.1f} ({dead.avg:.1f}) '
'Alive {alive.val:.1f} ({alive.avg:.1f}) '
'Tightness {tight.val:.5f} ({tight.avg:.5f}) '
'Bias {bias.val:.5f} ({bias.avg:.5f}) '
'Diff {diff.val:.5f} ({diff.avg:.5f}) '
'R {model_range:.3f} '
'beta {beta:.3f} ({beta:.3f}) '
'kappa {kappa:.3f} ({kappa:.3f}) '
'A_x {Axs.val:.5f} ({Axs.avg:.5f}) '
'not_relu_b {not_relu_b.val:.5f} ({not_relu_b.avg:.5f}) '
'A_norm {A_norms.val:.5f} ({A_norms.avg:.5f}) '
'Relu_b {Relu_bs.val:.5f} ({Relu_bs.avg:.5f}) '
'All {all_val:.5f} ({all_avg:.5f}) '.format(
t, i, eps, batch_time=batch_time,
loss=losses, errors=errors, robust_errors = robust_errors, l1_loss = l1_losses,
regular_ce_loss = regular_ce_losses, robust_ce_loss = robust_ce_losses,
unstable = unstable_neurons, dead = dead_neurons, alive = alive_neurons,
tight = relu_activities, bias = bound_bias, diff = bound_diff,
model_range = model_range,
beta=beta, kappa = kappa,
Axs = A_xs, not_relu_b = not_ReLU_lower_bs, A_norms = A_norms, Relu_bs = ReLU_lower_bs , all_val=all_val, all_avg =all_avg
))
if(bound_opt_eval):
if bound_opt_eval.get("ours", False):
bound_opt_name="ours"
elif bound_opt_eval.get("same-slope", False):
bound_opt_name="same-slope"
elif bound_opt_eval.get("zero-lb", False):
bound_opt_name="zero-lb"
elif bound_opt_eval.get("one-lb", False):
bound_opt_name="one-lb"
elif bound_opt_eval.get("binary", False):
bound_opt_name="binary"
elif bound_opt_eval.get("uniform", False):
bound_opt_name="uniform"
else:
bound_opt_name="crown-ibp"
logger.log( '[{} epoch:{:2d} eps:{:.6f}]: '
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Total Loss {loss.val:.4f} ({loss.avg:.4f}) '
'L1 Loss {l1_loss.val:.4f} ({l1_loss.avg:.4f}) '
'CE {regular_ce_loss.val:.4f} ({regular_ce_loss.avg:.4f}) '
'RCE {robust_ce_loss.val:.4f} ({robust_ce_loss.avg:.4f}) '
'Uns {unstable.val:.3f} ({unstable.avg:.3f}) '
'Dead {dead.val:.1f} ({dead.avg:.1f}) '
'Alive {alive.val:.1f} ({alive.avg:.1f}) '
'Tight {tight.val:.5f} ({tight.avg:.5f}) '
'Bias {bias.val:.5f} ({bias.avg:.5f}) '
'Diff {diff.val:.5f} ({diff.avg:.5f}) '
'Err {errors.val:.4f} ({errors.avg:.4f}) '
'Rob Err {robust_errors.val:.4f} ({robust_errors.avg:.4f}) '
'R {model_range:.3f} '
'beta {beta:.3f} ({beta:.3f}) '
'kappa {kappa:.3f} ({kappa:.3f}) '
'A_x {Axs.val:.5f} ({Axs.avg:.5f}) '
'not_relu_b {not_relu_b.val:.5f} ({not_relu_b.avg:.5f}) '
'A_norm {A_norms.val:.5f} ({A_norms.avg:.5f}) '
'Relu_b {Relu_bs.val:.5f} ({Relu_bs.avg:.5f}) '
'All {all_val:.5f} ({all_avg:.5f}) '.format(
bound_opt_name,t, eps, batch_time=batch_time,
loss=losses, errors=errors, robust_errors = robust_errors, l1_loss = l1_losses,
regular_ce_loss = regular_ce_losses, robust_ce_loss = robust_ce_losses,
unstable = unstable_neurons, dead = dead_neurons, alive = alive_neurons,
tight = relu_activities, bias = bound_bias, diff = bound_diff,
model_range = model_range,
kappa = kappa, beta=beta,Axs = A_xs, not_relu_b = not_ReLU_lower_bs, A_norms = A_norms, Relu_bs = ReLU_lower_bs , all_val=all_val, all_avg =all_avg
))
else:
logger.log( '[FINAL RESULT epoch:{:2d} eps:{:.6f}]: '
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Total Loss {loss.val:.4f} ({loss.avg:.4f}) '
'L1 Loss {l1_loss.val:.4f} ({l1_loss.avg:.4f}) '
'CE {regular_ce_loss.val:.4f} ({regular_ce_loss.avg:.4f}) '
'RCE {robust_ce_loss.val:.4f} ({robust_ce_loss.avg:.4f}) '
'Uns {unstable.val:.3f} ({unstable.avg:.3f}) '
'Dead {dead.val:.1f} ({dead.avg:.1f}) '
'Alive {alive.val:.1f} ({alive.avg:.1f}) '
'Tight {tight.val:.5f} ({tight.avg:.5f}) '
'Bias {bias.val:.5f} ({bias.avg:.5f}) '
'Diff {diff.val:.5f} ({diff.avg:.5f}) '
'Err {errors.val:.4f} ({errors.avg:.4f}) '
'Rob Err {robust_errors.val:.4f} ({robust_errors.avg:.4f}) '
'R {model_range:.3f} '
'beta {beta:.3f} ({beta:.3f}) '
'kappa {kappa:.3f} ({kappa:.3f}) '
'A_x {Axs.val:.5f} ({Axs.avg:.5f}) '
'not_relu_b {not_relu_b.val:.5f} ({not_relu_b.avg:.5f}) '
'A_norm {A_norms.val:.5f} ({A_norms.avg:.5f}) '
'Relu_b {Relu_bs.val:.5f} ({Relu_bs.avg:.5f}) '
'All {all_val:.5f} ({all_avg:.5f}) \n'.format(
t, eps, batch_time=batch_time,
loss=losses, errors=errors, robust_errors = robust_errors, l1_loss = l1_losses,
regular_ce_loss = regular_ce_losses, robust_ce_loss = robust_ce_losses,
unstable = unstable_neurons, dead = dead_neurons, alive = alive_neurons,
tight = relu_activities, bias = bound_bias, diff = bound_diff,
model_range = model_range,
kappa = kappa, beta=beta,Axs = A_xs, not_relu_b = not_ReLU_lower_bs, A_norms = A_norms, Relu_bs = ReLU_lower_bs , all_val=all_val, all_avg =all_avg
))
for i, l in enumerate(model if isinstance(model, BoundSequential) else model.module):
if isinstance(l, BoundLinear) or isinstance(l, BoundConv2d):
norm = l.weight.data.detach().view(l.weight.size(0), -1).abs().sum(1).max().cpu()
logger.log('layer {} norm {}'.format(i, norm))
if model.bound_opts['ours'] and train is False :
torch.set_grad_enabled(False)
if method == "natural":
return errors.avg, errors.avg,loss_list,All_list
else:
return robust_errors.avg, errors.avg ,loss_list, All_list
def Train_calloss_ours(loss,robust_ce,model, t, i, data, labels, loader, eps,end_eps, max_eps, norm, logger, verbose, train, method, cal_grad = False,beta=1.0, kappa=0.0,cal_lb=False,cal_loss=False, frozen =5, multistep=False,**kwargs):
if multistep:
niters=7
lower_d_list2=model.lower_d_list
for nn in range (niters):
if nn>=1:
loss, _ = Train_calloss(model, t, i, data, labels, loader, eps,end_eps, max_eps, norm, logger, verbose, train, method, lower_d_list2=lower_d_list2, beta=beta, kappa=kappa,cal_grad=True,**kwargs)
grad = torch.autograd.grad(loss,lower_d_list2,retain_graph=False, create_graph=False)
for list_i,g in enumerate(grad):
eta = g.sign()*0.1
lower_d2 = torch.clamp(lower_d_list2[list_i]-eta, min=0, max=1)
if (nn == niters-1):
lower_d2=lower_d2.detach()
lower_d_list2[list_i]=lower_d2
del g, eta
else:
lower_d_list2=[]
grad = torch.autograd.grad(loss, model.lower_d_list,retain_graph=False, create_graph=False)
for list_i,g in enumerate(grad):
eta = g.sign()*2
lower_d2 = torch.clamp(model.lower_d_list[list_i]-eta, min=0, max=1).detach()
lower_d_list2.append(lower_d2.type(torch.cuda.LongTensor))
del g, eta
del robust_ce, grad, loss
loss, robust_ce, clb, bias = Train_calloss(model, t, i, data, labels, loader, eps,end_eps, max_eps, norm, logger, verbose, train, method, lower_d_list2=lower_d_list2, beta=beta, kappa=kappa,cal_grad=True,cal_lb=True,frozen=frozen, **kwargs)
del model.lower_d_list
return loss, robust_ce, clb, bias
def main(args):
config = load_config(args)
global_eval_config = config["eval_params"]
config["models"][0]["model_id"]=config["eval_params"]["model_paths"]
models, model_names = config_modelloader(config, load_pretrain = True)
robust_errs = []
pgd_errs = []
errs = []
t=1000000
losses_list=[]
Alls_list=[]
for model, model_id, model_config in zip(models, model_names, config["models"]):
eval_config = copy.deepcopy(global_eval_config)
if "eval_params" in model_config:
eval_config.update(model_config["eval_params"])
model = BoundSequential.convert(model, eval_config["method_params"]["bound_opts"])
model.define_bound_opts(eval_config["method_params"]["bound_opts"])
normalize= eval_config["loader_params"]["normalize_input"]
bound_eval=eval_config["bound_eval"] ##bound eval setting is for evaluate a model with other bound methods (eval_params:bound_eval=true)
if bound_eval:
bound_opt_evals=[]
bound_opt_evals.append({'same-slope': False, 'zero-lb': False, 'one-lb': False, 'binary': False, 'ours': True, 'uniform': False}) ##ours
bound_opt_evals.append({'same-slope': False, 'zero-lb': False, 'one-lb': False, 'binary': False, 'ours': False, 'uniform': False}) ##crown ibp
bound_opt_evals.append({'same-slope': True, 'zero-lb': False, 'one-lb': False, 'binary': False, 'ours': False, 'uniform': False}) ## cap
bound_opt_evals.append({'same-slope': False, 'zero-lb': False, 'one-lb': False, 'binary': True, 'ours': False, 'uniform': False}) ##binary
bound_opt_evals.append({'same-slope': False, 'zero-lb': False, 'one-lb': False, 'binary': False, 'ours': False, 'uniform': True}) ##uniform
if eval_config["method_params"]["bound_opts"]["ours"]:
bound_opt_evals.remove({'same-slope': False, 'zero-lb': False, 'one-lb': False, 'binary': False, 'ours': True, 'uniform': False}) ##ours
elif eval_config["method_params"]["bound_opts"]["same-slope"]:
bound_opt_evals.remove({'same-slope': True, 'zero-lb': False, 'one-lb': False, 'binary': False, 'ours': False, 'uniform': False}) ## cap
elif eval_config["method_params"]["bound_opts"]["binary"]:
bound_opt_evals.remove({'same-slope': False, 'zero-lb': False, 'one-lb': False, 'binary': True, 'ours': False, 'uniform': False}) ##binary
elif eval_config["method_params"]["bound_opts"]["uniform"]:
bound_opt_evals.remove({'same-slope': False, 'zero-lb': False, 'one-lb': False, 'binary': False, 'ours': False, 'uniform': True}) ##uniform
else:
bound_opt_evals.remove({'same-slope': False, 'zero-lb': False, 'one-lb': False, 'binary': False, 'ours': False, 'uniform': False}) ##crown ibp
model = model.cuda()
# read training parameters from config file
method = eval_config["method"]
verbose = eval_config["verbose"]
eps = eval_config["epsilon"]
# parameters specific to a training method
method_param = eval_config["method_params"]
norm = float(eval_config["norm"])
train_data, test_data = config_dataloader(config, **eval_config["loader_params"])
model_name = get_path(config, model_id, "model", load = False)
print(model_name)
model_log = get_path(config, model_id, "eval_log")
logger = Logger(open(model_log, "w"))
logger.log("evaluation configurations:", eval_config)
logger.log("Evaluating...")
print("Model:",model)
with torch.no_grad():
# evaluate
if bound_eval:
for _,bound_opt_eval in enumerate(bound_opt_evals):
model.convert_bounds(bound_opt_eval)
_,_,loss_list,All_list=Train(model, t, test_data, EpsilonScheduler("linear", 0, 0, eps, eps, 1), eps, norm, logger, verbose, False, None, method, bound_opt_eval=bound_opt_eval, **method_param)
losses_list.append(loss_list)
Alls_list.append(All_list)
model.convert_bounds(eval_config["method_params"]['bound_opts'])
robust_err, err, loss_list, All_list = Train(model, t, test_data, EpsilonScheduler("linear", 0, 0, eps, eps, 1), eps, norm, logger, verbose, False, None, method, **method_param)
losses_list.append(loss_list)
Alls_list.append(All_list)
if normalize:
pgd_err = evaluate_pgd_n(loader=test_data,model=model,norm=norm, epsilon=eps, alpha=eps/4, niters=100)
else:
pgd_err = evaluate_pgd(loader=test_data,model=model,norm=norm, epsilon=eps, alpha=eps/4, niters=100)
robust_errs.append(robust_err)
pgd_errs.append(float(pgd_err.item()))
errs.append(err)
robust_errs = np.array(robust_errs)
i_min = np.argmin(robust_errs)
i_max = np.argmax(robust_errs)
i_median = np.argsort(robust_errs)[len(robust_errs) // 2]
print("-------------------------------------")
print('{:.4f}/{:.4f}/{:.4f}'.format(np.mean(errs),np.mean(pgd_errs),np.mean(robust_errs)))
if global_eval_config["violin_plot"]: ## if you want to get loss and tightness (set eval_params:bound_eval=true and eval_params:violin_plot=true)
print("-------------------------------------")
print("LOSS=",losses_list)
print("ALL=",Alls_list)
if __name__ == "__main__":
args = argparser()
main(args)