-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path00-lesson.tex
48 lines (45 loc) · 2.15 KB
/
00-lesson.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
\section*{Introduction to L'H\^opital's Rule}
\lhopital's rule is used to calculate limits.
\vspace{\baselineskip}
\noindent If $\displaystyle{\lim_{x\to a} f(x)\to\infty}$ and $\displaystyle{\lim_{x\to a} g(x)\to\infty}$ OR $\displaystyle{\lim_{x\to a} f(x)=0}$ and $\displaystyle{\lim_{x\to a} g(x)=0}$ then
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$$
\printanswers
\begin{questions}
\question
Calculate
$\displaystyle{\lim_{z\to 0} \frac{\sin(z)}{2z}}$
\begin{solution}[1.5in]
This is a limit of the form $\frac{\infty}{\infty}$ so \lhopital's rule applies.
$$\lim_{z\to 0} \frac{\sin(z)}{2z} = \lim_{z\to 0} \frac{\cos(z)}{2} = \frac{1}{2}$$
\end{solution}
\question
Calculate $\displaystyle{\lim_{y\to \infty} \frac{\ln(y)}{3y}}$
\begin{solution}[1.5in]
This is a limit of the form $\frac{\infty}{\infty}$ so \lhopital's rule applies.
$$\lim_{y\to \infty} \frac{\ln(y)}{3y}=\lim_{y\to \infty} \frac{\frac{1}{y}}{3} = \lim_{y\to \infty} \frac{1}{3y} = 0$$
\end{solution}
\question
Calculate $\displaystyle{\lim_{x\to 1} \frac{x^3-3x^2+2}{x^3-x^2-x+1}}$
\begin{solution}[1.5in]
This is a limit of the form $\frac{0}{0}$ so \lhopital's rule applies.
$$\lim_{x\to 1} \frac{x^3-3x^2+2}{x^3-x^2-x+1} = \lim_{x\to 1} \frac{3x^2-6x}{3x^2-2x-1} $$
This is still of the form $\frac{0}{0}$, so apply \lhopital's rules again.
$$\lim_{x\to 1} \frac{3x^2-6x}{3x^2-2x-1} = \lim_{x\to 1} \frac{6x-6}{6x-2} = 0 $$
\end{solution}
\question
\begin{parts}
\part Calculate $\displaystyle{\lim_{x\to 3} \frac{3x^2+1}{x+4}}$
\begin{solution}[1in]
This limit is {\bf not} of a form you can use \lhopital's rule.
$$\lim_{x\to 3} \frac{3x^2+1}{x+4} = \frac{28}{7}=4$$
\end{solution}
\part Calculate $\displaystyle{\lim_{x\to 3} 6x}$
\begin{solution}[1in]
This limit is {\bf not} of a form you can use \lhopital's rule.
$$\lim_{x\to 3} 6x = 18$$
If we took the derivative of the denominator and the numerator of the limit of part (a). We would get
$$\frac{6x}{1}=6x$$
This shows that \lhopital's rule {\bf only} applies if the limits are of these special forms
\end{solution}
\end{parts}
\end{questions}