-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_network.py
52 lines (45 loc) · 1.42 KB
/
train_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from Model import Net
model = Net(10) #10 classes
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr = 0.001,momentum = 0.9)
from dataset import MeshData
DataObject = MeshData('/home/prathmesh/Desktop/SoC-2020/ModelNet10_stl/ModelNet10')
dataLoad = torch.utils.data.DataLoader(DataObject, batch_size=1, shuffle=True)
batch = next(iter(dataLoad))
print(len(batch))
max_epochs = 30
loss_list = []
for epochs in range(max_epochs):
#print('e =',epochs)
running_loss = 0.0
for i,data in enumerate(dataLoad,0):
x,y = data
x = x[0].float().to(device)
#y = y.float()
y = y[0].to(device)
optimizer.zero_grad()
yhat = model(x)
loss = criterion(yhat,y)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 200 == 199: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 200))
running_loss = 0.0
#print(running_loss)
import matplotlib.pyplot as plt
plt.plot(loss_list)
plt.title('Model_loss vs epochs')
plt.ylabel('Loss')
plt.xlabel('epochs')
s = '../working/epochwise_loss_' + str(epochs)
plt.savefig(s)
plt.show()
plt.close()
torch.save(model.state_dict(), '../working/new_mod.pth')
PATH = '/home/prathmesh/Desktop/Mesh_Neural_Network/new_models.pth'
torch.save(model.state_dict(), PATH)