-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNetwork.java
326 lines (285 loc) · 12.6 KB
/
Network.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
package neural;
import core.Flow;
import core.Graph;
import core.Node;
import java.util.*;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.function.*;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public class Network implements Graph {
public static final int OUT_OF_RANGE_VALUE = -1;
private final List<Receptor> receptors = new ArrayList<>();
private final List<Receptor> addedReceptors = new ArrayList<>();
private final List<Effector> effectors = new ArrayList<>();
private final List<Effector> runEffectors = new ArrayList<>();
private final List<Effector> punishedEffectors = new ArrayList<>();
private final List<Neuron> neurons = new ArrayList<>();
private final List<Node<?, ?>> deadendNodes = new ArrayList<>();
private final List<Node<?, ?>> sidewayNodes = new ArrayList<>();
private final List<Node<?, ?>> leafNodes = new ArrayList<>();
private final List<NetworkEventsListener> listeners;
private int timestamp = 0;
Neuron targetNeuron = null;
private final int maxNeuronSize;
private final PainEffector painEffector;
public Network(List<NetworkEventsListener> listeners, int maxNeuronSize) {
this.listeners = listeners;
this.maxNeuronSize = maxNeuronSize;
painEffector = addPainEffector();
}
public Network(int maxNeuronSize) {
this.listeners = new ArrayList<>();
this.maxNeuronSize = maxNeuronSize;
painEffector = addPainEffector();
}
private PainEffector addPainEffector() {
PainEffector painEffector = new PainEffector(this);
listeners.forEach(l -> l.onPainEffectorAdded(painEffector));
return painEffector;
}
static Flow convergeForward(List<? extends Synapse<?, ?>> synapses) {
assert !synapses.isEmpty();
if (synapses.stream().anyMatch(s -> s.getForward() == Flow.RUN && s.getType() == Synapse.Type.INHIBITORY)) {
return Flow.STILL;
} else if (synapses.stream().anyMatch(s -> s.getForward() == Flow.RUN && s.getType() == Synapse.Type.EXCITATORY)) {
return Flow.RUN;
} else {
return Flow.STILL;
}
}
static Flow convergeBackward(List<? extends Synapse<?, ?>> synapses) {
// assert synapses.isEmpty() || synapses.stream().anyMatch(s -> s.getType() == Synapse.Type.EXCITATORY);
if (synapses.stream().anyMatch(s -> s.getBackward() == Flow.RUN && s.getType() == Synapse.Type.EXCITATORY)) {
return Flow.RUN;
} else {
return Flow.STILL;
}
}
public Stream<Effector> streamOfEffectors() {
return effectors.stream();
}
public void resetState() {
neurons.forEach(Neuron::resetState);
receptors.forEach(Receptor::resetState);
}
/**
* Adds a reception for single object.
*
* @param t object supplier
* @param adapter transformation function from source supplier to supplier of booleans
* @param <T> type parameter bounded to Supplier
* @return just created {@link Receptor} instance
*/
public <T extends Supplier<?>> Receptor addReceptor(T t, Function<T, BooleanSupplier> adapter) {
return addReceptor(adapter.apply(t));
}
/**
* Adds a set of receptors for objects being supplied by supplier.
*
* @param tSupplier object supplier
* @param u compound parameter to use in mapping function
* @param receptorCount buckets count
* @param receptorMapper mapping function from object being provided by supplier and receptor index
* @param <T> type parameter
* @param <U> type parameter
*/
public <T, U> void addReceptorField(Supplier<T> tSupplier, U u, int receptorCount, BiFunction<T, U, Integer> receptorMapper) {
for (int i = 0; i < receptorCount; i++) {
int bdx = i;
addReceptor(tSupplier, t1 -> () -> receptorMapper.apply(tSupplier.get(), u) == bdx);
}
}
/**
* Creates a receptors for each object in dictionary.
* Dict is final and non-extensible.
* If the supplier supplies unknown object nothing will happen, no one receptor will be excited by the object.
*
* @param valueSupplier a channel by which objects are delivered to set of receptors
* @param dictionary a non-empty set with exact object values to be mapped to initial receptors
*/
public void addStrictDictReceptor(Supplier<Object> valueSupplier, Set<Object> dictionary) {
AtomicInteger idx = new AtomicInteger();
Map<Object, Integer> indexMapping = dictionary.stream().collect(Collectors.toMap(t -> t, t -> idx.incrementAndGet()));
indexMapping.keySet().forEach(t -> {
int index = indexMapping.getOrDefault(t, OUT_OF_RANGE_VALUE);
addReceptor(valueSupplier, supplier -> () -> {
Integer receptorIndex = indexMapping.get(supplier.get());
return receptorIndex != null && receptorIndex.equals(index);
});
});
}
/**
* Creates a receptors for each object in dictionary.
* At runtime for each unknown object being supplied by supplier separate receptor will be created.
* It is possible to call for method several times. Thus, several sets will be created, exactly one for every supplier.
*
* @param valueSupplier a channel by which objects are delivered to set of receptors
* @param dictionary a non-empty set with initial object values to be mapped to initial receptors
*/
public void addAdaptiveDictReceptor(Supplier<Object> valueSupplier, Set<Object> dictionary) {
if (dictionary.isEmpty()) {
throw new RuntimeException("The dictionary cannot be empty");
}
AtomicInteger idx = new AtomicInteger();
Map<Object, Integer> objectRegistry = dictionary.stream().collect(Collectors.toMap(t -> t, t -> idx.getAndIncrement()));
objectRegistry.keySet().forEach(t -> addReceptor(valueSupplier, supplier -> () -> adaptiveEvaluator(valueSupplier, idx, objectRegistry, objectRegistry.get(t))));
}
private boolean adaptiveEvaluator(Supplier<Object> valueSupplier, AtomicInteger idx, Map<Object, Integer> objectRegistry, int testReceptorIndex) {
Object value = valueSupplier.get();
int receptorIndex = objectRegistry.getOrDefault(value, OUT_OF_RANGE_VALUE);
if (receptorIndex == OUT_OF_RANGE_VALUE) {
int rIndex = objectRegistry.computeIfAbsent(value, v -> idx.getAndIncrement());
Receptor receptor = addReceptor(valueSupplier, supplier -> () -> adaptiveEvaluator(supplier, idx, objectRegistry, rIndex));
receptor.triggerConverge();
return false;
} else {
return testReceptorIndex == receptorIndex;
}
}
public void addCharacterReception(Supplier<Character> characterSupplier, Character fromCharacter, int receptorCount) {
addReceptorField(characterSupplier, fromCharacter, receptorCount, (character, character2) -> character - character2);
}
public void addDoubleReception(DoubleSupplier doubleSupplier, Bounds bounds, int receptorCount) {
addReceptorField(doubleSupplier::getAsDouble,
bounds,
receptorCount,
(value, bounds1) -> (int) ((value - bounds1.lowerBound()) / ((bounds1.upperBound() - bounds1.lowerBound()) / receptorCount)));
}
public int getTimestamp() {
return timestamp;
}
public void increaseTimestamp() {
timestamp++;
}
public Receptor addReceptor(BooleanSupplier booleanSupplier) {
Receptor receptor = new Receptor(this, Objects.requireNonNull(booleanSupplier));
addedReceptors.add(receptor);
listeners.forEach(l -> l.onReceptorAdded(receptor));
return receptor;
}
public Effector addEffector(Runnable runnable) {
Effector effector = new Effector(this, Objects.requireNonNull(runnable));
effectors.add(effector);
listeners.forEach(l -> l.onEffectorAdded(effector));
return effector;
}
public void addReflex(BooleanSupplier booleanSupplier, Runnable runnable) {
Receptor receptor = addReceptor(booleanSupplier);
Effector effector = addEffector(runnable);
connect(receptor, effector, Synapse.Type.EXCITATORY);
receptor.streamOfOutputs().forEach(Synapse::resetState);
}
public void addPainReceptor(BooleanSupplier booleanSupplier) {
Receptor receptor = addReceptor(booleanSupplier);
connect(receptor, painEffector, Synapse.Type.EXCITATORY);
receptor.streamOfOutputs().forEach(Synapse::resetState);
}
private Neuron addNeuron() {
Neuron neuron = new Neuron(this);
neurons.add(neuron);
listeners.forEach(l -> l.onNeuronAdded(neuron));
return neuron;
}
public void tick() {
mergeReceptors();
forwardPass();
notifyListeners();
backwardPass();
listeners.forEach(l -> l.onDeadendNodesDetected(deadendNodes, receptors.size() + neurons.size()));
createNewConnections();
increaseTimestamp();
}
private void mergeReceptors() {
if (!addedReceptors.isEmpty()) {
receptors.addAll(addedReceptors);
addedReceptors.clear();
}
}
private void notifyListeners() {
listeners.forEach(l -> {
for (Receptor receptor : receptors) {
l.onReceptorStateChanged(receptor);
receptor.streamOfOutputs().forEach(l::onSynapseStateChanged);
}
for (Neuron neuron : neurons) {
l.onNeuronStateChanged(neuron);
neuron.streamOfOutputs().forEach(l::onSynapseStateChanged);
}
effectors.forEach(l::onEffectorStateChanged);
l.onPainEffectorStateChanged(painEffector);
});
}
private void backwardPass() {
effectors.forEach(Node::triggerBackpass);
leafNodes.forEach(Node::triggerBackpass);
painEffector.triggerBackpass();
leafNodes.clear();
}
private void forwardPass() {
receptors.forEach(Node::triggerConverge);
}
private void createNewConnections() {
if (!deadendNodes.isEmpty() && neurons.size() < maxNeuronSize) {
targetNeuron = addNeuron();
deadendNodes.forEach(d -> connect(d, targetNeuron, Synapse.Type.EXCITATORY));
sidewayNodes.forEach(d -> connect(d, targetNeuron, Synapse.Type.INHIBITORY));
runEffectors.forEach(d -> connect(targetNeuron, d, Synapse.Type.EXCITATORY));
punishedEffectors.forEach(d -> connect(targetNeuron, d, Synapse.Type.INHIBITORY));
}
deadendNodes.clear();
sidewayNodes.clear();
runEffectors.clear();
punishedEffectors.clear();
}
private void connect(Node source, Node target, Synapse.Type type) {
assert !source.equals(target);
Synapse synapse = new Synapse<>(source, target, type);
source.addOutput(synapse);
target.addInput(synapse);
listeners.forEach(l -> l.onSynapseAdded(synapse));
}
public void onRunEffectorFound(Effector effector) {
runEffectors.add(effector);
}
public void onPunishedEffectorFound(Effector effector) {
punishedEffectors.add(effector);
}
@Override
public void onDeadendNodeFound(Node<?, ?> node) {
assert !deadendNodes.contains(node) : timestamp + ": " + node.toString();
assert !(node instanceof Effector) : timestamp + ": " + node.toString();
//TODO ugly non-optimal workaround solution
if (node instanceof Neuron neuron) {
neuron.streamOfInputs().forEach(synapse -> {
if (synapse.getType() == Synapse.Type.EXCITATORY) {
synapse.getInput().setParent();
}
});
}
deadendNodes.add(node);
}
@Override
public void onSidewayNodeFound(Node<?, ?> node) {
assert !sidewayNodes.contains(node) : timestamp + ": " + node.toString();
assert !(node instanceof Effector) : timestamp + ": " + node.toString();
sidewayNodes.add(node);
}
@Override
public void onLeafNodeFound(Node<?, ?> node) {
leafNodes.add(node);
}
public int getNeuronCount() {
return neurons.size();
}
public int getReceptorCount() {
return receptors.size();
}
public int getEffectorCount() {
return effectors.size();
}
public int getNodesCount() {
int cnt = Optional.ofNullable(painEffector).isPresent() ? 1 : 0;
return neurons.size() + receptors.size() + addedReceptors.size() + effectors.size() + cnt;
}
}