-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathSPANet.py
executable file
·178 lines (152 loc) · 7.05 KB
/
SPANet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import torch
from torch import nn
import torch.nn.functional as F
from collections import OrderedDict
# import common
from irnn import irnn
###### Layer
def conv1x1(in_channels, out_channels, stride = 1):
return nn.Conv2d(in_channels,out_channels,kernel_size = 1,
stride =stride, padding=0,bias=False)
def conv3x3(in_channels, out_channels, stride = 1):
return nn.Conv2d(in_channels,out_channels,kernel_size = 3,
stride =stride, padding=1,bias=False)
class Bottleneck(nn.Module):
def __init__(self,in_channels,out_channels,):
super(Bottleneck,self).__init__()
m = OrderedDict()
m['conv1'] = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
m['relu1'] = nn.ReLU(True)
m['conv2'] = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=2, bias=False,dilation=2)
m['relu2'] = nn.ReLU(True)
m['conv3'] = nn.Conv2d(out_channels, out_channels, kernel_size=1, bias=False)
self.group1 = nn.Sequential(m)
self.relu= nn.Sequential(nn.ReLU(True))
def forward(self, x):
out = self.group1(x)
return out
class Spacial_IRNN(nn.Module):
def __init__(self,in_channels,alpha=0.2):
super(Spacial_IRNN,self).__init__()
self.left_weight = nn.Conv2d(in_channels,in_channels,kernel_size=1,stride=1,groups=in_channels,padding=0)
self.right_weight = nn.Conv2d(in_channels,in_channels,kernel_size=1,stride=1,groups=in_channels,padding=0)
self.up_weight = nn.Conv2d(in_channels,in_channels,kernel_size=1,stride=1,groups=in_channels,padding=0)
self.down_weight = nn.Conv2d(in_channels,in_channels,kernel_size=1,stride=1,groups=in_channels,padding=0)
self.left_weight.weight = nn.Parameter(torch.tensor([[[[alpha]]]]*in_channels))
self.right_weight.weight = nn.Parameter(torch.tensor([[[[alpha]]]]*in_channels))
self.up_weight.weight = nn.Parameter(torch.tensor([[[[alpha]]]]*in_channels))
self.down_weight.weight = nn.Parameter(torch.tensor([[[[alpha]]]]*in_channels))
def forward(self,input):
return irnn()(input,self.up_weight.weight,self.right_weight.weight,self.down_weight.weight,self.left_weight.weight, self.up_weight.bias,self.right_weight.bias,self.down_weight.bias,self.left_weight.bias)
class Attention(nn.Module):
def __init__(self,in_channels):
super(Attention,self).__init__()
self.out_channels = int(in_channels/2)
self.conv1 = nn.Conv2d(in_channels,self.out_channels,kernel_size=3,padding=1,stride=1)
self.relu1 = nn.ReLU()
self.conv2 = nn.Conv2d(self.out_channels,self.out_channels,kernel_size=3,padding=1,stride=1)
self.relu2 = nn.ReLU()
self.conv3 = nn.Conv2d(self.out_channels,4,kernel_size=1,padding=0,stride=1)
self.sigmod = nn.Sigmoid()
def forward(self,x):
out = self.conv1(x)
out = self.relu1(out)
out = self.conv2(out)
out = self.relu2(out)
out = self.conv3(out)
out = self.sigmod(out)
return out
class SAM(nn.Module):
def __init__(self,in_channels,out_channels,attention=1):
super(SAM,self).__init__()
self.out_channels = out_channels
self.irnn1 = Spacial_IRNN(self.out_channels)
self.irnn2 = Spacial_IRNN(self.out_channels)
self.conv_in = conv3x3(in_channels,in_channels)
self.conv2 = conv3x3(in_channels*4,in_channels)
self.conv3 = conv3x3(in_channels*4,in_channels)
self.relu2 = nn.ReLU(True)
self.attention = attention
if self.attention:
self.attention_layer = Attention(in_channels)
self.conv_out = conv1x1(self.out_channels,1)
self.sigmod = nn.Sigmoid()
def forward(self,x):
if self.attention:
weight = self.attention_layer(x)
out = self.conv_in(x)
top_up,top_right,top_down,top_left = self.irnn1(out)
# direction attention
if self.attention:
top_up.mul(weight[:,0:1,:,:])
top_right.mul(weight[:,1:2,:,:])
top_down.mul(weight[:,2:3,:,:])
top_left.mul(weight[:,3:4,:,:])
out = torch.cat([top_up,top_right,top_down,top_left],dim=1)
out = self.conv2(out)
top_up,top_right,top_down,top_left = self.irnn2(out)
# direction attention
if self.attention:
top_up.mul(weight[:,0:1,:,:])
top_right.mul(weight[:,1:2,:,:])
top_down.mul(weight[:,2:3,:,:])
top_left.mul(weight[:,3:4,:,:])
out = torch.cat([top_up,top_right,top_down,top_left],dim=1)
out = self.conv3(out)
out = self.relu2(out)
mask = self.sigmod(self.conv_out(out))
return mask
###### Network
class SPANet(nn.Module):
def __init__(self):
super(SPANet,self).__init__()
self.conv_in = nn.Sequential(
conv3x3(3,32),
nn.ReLU(True)
)
self.SAM1 = SAM(32,32,1)
self.res_block1 = Bottleneck(32,32)
self.res_block2 = Bottleneck(32,32)
self.res_block3 = Bottleneck(32,32)
self.res_block4 = Bottleneck(32,32)
self.res_block5 = Bottleneck(32,32)
self.res_block6 = Bottleneck(32,32)
self.res_block7 = Bottleneck(32,32)
self.res_block8 = Bottleneck(32,32)
self.res_block9 = Bottleneck(32,32)
self.res_block10 = Bottleneck(32,32)
self.res_block11 = Bottleneck(32,32)
self.res_block12 = Bottleneck(32,32)
self.res_block13 = Bottleneck(32,32)
self.res_block14 = Bottleneck(32,32)
self.res_block15 = Bottleneck(32,32)
self.res_block16 = Bottleneck(32,32)
self.res_block17 = Bottleneck(32,32)
self.conv_out = nn.Sequential(
conv3x3(32,3)
)
def forward(self, x):
out = self.conv_in(x)
out = F.relu(self.res_block1(out) + out)
out = F.relu(self.res_block2(out) + out)
out = F.relu(self.res_block3(out) + out)
Attention1 = self.SAM1(out)
out = F.relu(self.res_block4(out) * Attention1 + out)
out = F.relu(self.res_block5(out) * Attention1 + out)
out = F.relu(self.res_block6(out) * Attention1 + out)
Attention2 = self.SAM1(out)
out = F.relu(self.res_block7(out) * Attention2 + out)
out = F.relu(self.res_block8(out) * Attention2 + out)
out = F.relu(self.res_block9(out) * Attention2 + out)
Attention3 = self.SAM1(out)
out = F.relu(self.res_block10(out) * Attention3 + out)
out = F.relu(self.res_block11(out) * Attention3 + out)
out = F.relu(self.res_block12(out) * Attention3 + out)
Attention4 = self.SAM1(out)
out = F.relu(self.res_block13(out) * Attention4 + out)
out = F.relu(self.res_block14(out) * Attention4 + out)
out = F.relu(self.res_block15(out) * Attention4 + out)
out = F.relu(self.res_block16(out) + out)
out = F.relu(self.res_block17(out) + out)
out = self.conv_out(out)
return Attention1 , out