-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate_model.py
60 lines (47 loc) · 1.85 KB
/
evaluate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import os
import yaml
import click
from pathlib import Path
import torch
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
import warnings
warnings.filterwarnings('ignore')
from LightningModules.Models.gravnet import GravNet
from LightningModules.Models.gravnetext import GravNetExt
# from pytorch_lightning.plugins import DDPPlugin
from pytorch_lightning.strategies import DDPStrategy as DDPPlugin
from pytorch_lightning.overrides.base import _LightningModuleWrapperBase as LightningDistributedModule
class CustomDDPPlugin(DDPPlugin):
def configure_ddp(self):
self.pre_configure_ddp()
self._model = self._setup_model(LightningDistributedModule(self.model))
self._register_ddp_hooks()
self._model._set_static_graph()
@click.command()
@click.argument('config', type=str, required=True)
def main(config):
with open(config) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
evaluate(config)
def evaluate(config):
try:
checkpoint_path = max((str(path) for path in Path(config["artifacts"]).rglob("best*.ckpt")), key=os.path.getctime)
except:
raise ValueError(f"No checkpoint saved for {config['artifacts']}")
print(f"Loading checkpoint: {checkpoint_path}")
checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
model_name = checkpoint["hyper_parameters"]["model"]
if model_name in globals():
model = globals()[model_name].load_from_checkpoint(checkpoint_path)
else:
raise ValueError(f"Model name {model_name} not found in globals")
accelerator = "gpu" if torch.cuda.is_available() else None
trainer = Trainer(
# devices=config["gpus"],
accelerator=accelerator,
)
trainer.test(model)
if __name__ == "__main__":
main()