-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
257 lines (214 loc) · 12.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import argparse
import torch
from torch import nn
from torch.nn import functional as F
from models import model_factory
from data.dataset import available_datasets, get_train_dataloader, get_val_dataloader, dataset
from utils import save_options, get_optim_and_scheduler, set_mode, set_requires_grad, set_lambda
import os
import random
import numpy as np
def get_args():
parser = argparse.ArgumentParser(description="Script to train DG_VIA_ER", formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--dataset", choices=["PACS"], help="Mulit-domain dataset", default="PACS")
parser.add_argument("--source", choices=available_datasets, help="Source", nargs='+')
parser.add_argument("--target", choices=available_datasets, help="Target", default="art_painting")
parser.add_argument("--batch_size", "-b", type=int, default=64, help="Batch size")
parser.add_argument("--image_size", type=int, default=224, help="Image size")
parser.add_argument("--data_dir", default="./dataset", help="Data directory")
parser.add_argument("--datalist_dir", default="./datalist", help="Data list directory")
parser.add_argument("--min_scale", default=0.8, type=float, help="Minimum scale percent")
parser.add_argument("--max_scale", default=1.0, type=float, help="Maximum scale percent")
parser.add_argument("--flip", default=0.5, type=float, help="Chance of random horizontal flip")
parser.add_argument("--jitter", default=0.4, type=float, help="Color jitter amount")
parser.add_argument("--lr", type=float, default=.001, help="Learning rate for main model F and T")
parser.add_argument("--lr_c", type=float, default=.0001, help="Learning rate for classifier T_i")
parser.add_argument("--lr_cp", type=float, default=.0001, help="Learning rate for classifier, T_i^'")
parser.add_argument("--lr_d", type=float, default=.001, help="Learning rate for discriminator")
parser.add_argument("--lbd_c", type=float, default=0.05, help="Weight for classifier T_i")
parser.add_argument("--lbd_cp", type=float, default=0.001, help="Weight for classifier T_i^' (GRL)")
parser.add_argument("--lbd_d", type=float, default=0.1, help="Weight for discriminator (GRL)")
parser.add_argument("--epochs", type=int, default=100, help="Number of epochs")
parser.add_argument("--lr_steps", type=int, default=60, nargs='+', help='Step size of LR decay')
parser.add_argument("--lr_gamma", type=float, default=0.1, help='Multiplicative factor of LR decay')
parser.add_argument("--warmup_step", type=int, default=10)
parser.add_argument("--warmup_weight", type=float, default=0.01)
parser.add_argument("--num_classes", "-c", type=int, default=7, help="Number of classes")
parser.add_argument("--network", choices=model_factory.nets_map.keys(), default="resnet18", help="Which network to use")
parser.add_argument("--exp_folder", default="experiments", help="Directory for logs and models")
return parser.parse_args()
class Trainer:
def __init__(self, args):
args.source = [d for d in dataset[args.dataset] if d != args.target]
self.args = args
self.device = "cuda" if torch.cuda.is_available() else "cpu"
main_model, dis_model, c_model, cp_model = model_factory.get_network(args.network)(num_classes=args.num_classes,
num_domains=len(args.source))
self.main_model = self._model2device(main_model)
self.dis_model = self._model2device(dis_model)
self.c_model = self._model2device(c_model)
self.cp_model = self._model2device(cp_model)
self.source_loader_list, self.val_loader, self.img_num_per_domain = get_train_dataloader(args)
self.target_loader = get_val_dataloader(args)
self.test_loaders = {"val": self.val_loader, "test": self.target_loader}
print("Dataset size: train %d, val %d, test %d" % (sum(self.img_num_per_domain), len(self.val_loader.dataset), len(self.target_loader.dataset)))
self.optimizer, self.scheduler = get_optim_and_scheduler([self.main_model, self.dis_model, self.c_model, self.cp_model],
[args.lr, args.lr_d, args.lr_c, args.lr_cp], epochs=args.epochs, lr_steps=args.lr_steps, gamma=args.lr_gamma)
self.num_classes = args.num_classes
self.num_domains = len(args.source)
self.base_dir = os.path.join(args.exp_folder, args.network, args.dataset)
self.save_dir = os.path.join(self.base_dir, args.target)
if not os.path.exists(self.save_dir):
os.makedirs(self.save_dir)
save_options(args, self.save_dir)
self.log_file = os.path.join(self.save_dir, "loss_log.txt")
def _model2device(self, model):
if model is None:
return None
model.to(self.device)
return model
def _compute_dis_loss(self, feature, domains):
if self.dis_model is not None:
domain_logit = self.dis_model(feature)
weight = [1.0 / img_num for img_num in self.img_num_per_domain]
weight = torch.FloatTensor(weight).to(self.device)
weight = weight / weight.sum() * self.num_domains
domain_loss = F.cross_entropy(domain_logit, domains, weight=weight)
else:
domain_loss = torch.zeros(1, requires_grad=True).to(self.device)
return domain_loss
def _compute_cls_loss(self, model, feature, label, domain, mode="self"):
if model is not None:
feature_list = []
label_list = []
weight_list = []
for i in range(self.num_domains):
if mode == "self":
feature_list.append(feature[domain==i])
label_list.append(label[domain==i])
else:
feature_list.append(feature[domain!=i])
label_list.append(label[domain!=i])
weight = torch.zeros(self.num_classes).to(self.device)
for j in range(self.num_classes):
weight[j] = 0 if (label_list[-1]==j).sum() == 0 else 1.0 / (label_list[-1]==j).sum().float()
weight = weight / weight.sum()
weight_list.append(weight)
class_logit = model(feature_list)
loss = 0
for p, l, w in zip(class_logit, label_list, weight_list):
if p is None:
continue
loss += F.cross_entropy(p, l, weight=w) / self.num_domains
else:
loss = torch.zeros(1, requires_grad=True).to(self.device)
return loss
def _do_epoch(self):
set_mode(self.main_model, "train")
set_mode(self.dis_model, "train")
set_mode(self.c_model, "train")
set_mode(self.cp_model, "train")
set_lambda([self.dis_model],
[self.args.lbd_d])
set_lambda([self.c_model, self.cp_model],
[self.args.lbd_c, self.args.lbd_cp])
loader_iter_list = []
loader_size_list = []
if self.current_epoch < self.args.warmup_step:
aux_weight = self.args.warmup_weight
main_weight = self.args.warmup_weight
else:
aux_weight = 1
main_weight = 1
for loader in self.source_loader_list:
loader_iter_list.append(enumerate(loader))
loader_size_list.append(len(loader))
for it in range(max(loader_size_list)):
data = []
labels = []
domains = []
for idx, iter_ in zip(range(self.num_domains), loader_iter_list):
try:
item = iter_.__next__()
except StopIteration:
loader_iter_list[idx] = enumerate(self.source_loader_list[idx])
item = loader_iter_list[idx].__next__()
data.append(item[1][0])
labels.append(item[1][1])
domains.append(torch.ones(labels[-1].size(0)).long()*idx)
data = torch.cat(data, dim=0).to(self.device)
labels = torch.cat(labels, dim=0).to(self.device)
domains = torch.cat(domains, dim=0).to(self.device)
set_requires_grad(self.main_model, False)
set_requires_grad(self.c_model, True)
_, feature = self.main_model(data)
c_loss_self = self._compute_cls_loss(self.c_model, feature.detach(), labels, domains, mode="self") * aux_weight
self.optimizer.zero_grad()
c_loss_self.backward()
self.optimizer.step()
set_requires_grad([self.main_model, self.dis_model, self.c_model, self.cp_model], True)
class_logit, feature = self.main_model(data)
main_loss = F.cross_entropy(class_logit, labels) * main_weight
dis_loss = self._compute_dis_loss(feature, domains) * aux_weight
set_requires_grad(self.c_model, False)
c_loss_others = self._compute_cls_loss(self.c_model, feature, labels, domains, mode="others") * aux_weight
cp_loss = self._compute_cls_loss(self.cp_model, feature, labels, domains, mode="self") * aux_weight
loss = dis_loss + c_loss_others + cp_loss + main_loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
loss += c_loss_self
message = "epoch %d iter %d: all %.6f main %.6f dis %.6f c_self %.6f c_others %.6f cp %.6f\n" % (self.current_epoch, it,
loss.data, main_loss.data, dis_loss.data, c_loss_self.data, c_loss_others.data, cp_loss.data)
with open(self.log_file, "a") as fid:
fid.write(message)
print(message)
del loss, main_loss, dis_loss, c_loss_self, c_loss_others, cp_loss
self.main_model.eval()
with torch.no_grad():
with open(self.log_file, "a") as fid:
for phase, loader in self.test_loaders.items():
class_correct, all_domains = self.do_test(loader)
class_correct = class_correct.float()
class_acc = class_correct.mean() * 100.0
self.results[phase][self.current_epoch] = class_acc
if phase == "val":
message = "epoch %d: val_all_acc %.5f"%(self.current_epoch, class_acc)
for i in range(self.num_domains):
cc_i = class_correct[all_domains == i]
ca_i = cc_i.mean() * 100.0
message += " val_%s_acc %.5f"%(self.args.source[i], ca_i)
message += "\n"
fid.write(message)
print(message)
elif phase == "test":
message = "epoch %d: test_acc %.5f\n"%(self.current_epoch, class_acc)
fid.write(message)
print(message)
def do_test(self, loader):
class_correct = []
all_domains = []
for _, ((data, labels), domains) in enumerate(loader):
data, labels, domains = data.to(self.device), labels.to(self.device), domains.to(self.device)
class_logit, _ = self.main_model(data)
_, cls_pred = class_logit.max(dim=1)
class_correct.append(cls_pred == labels.data)
all_domains.append(domains)
return torch.cat(class_correct, 0), torch.cat(all_domains, 0)
def do_training(self):
self.results = {"val": torch.zeros(self.args.epochs), "test": torch.zeros(self.args.epochs)}
for self.current_epoch in range(self.args.epochs):
self._do_epoch()
self.scheduler.step()
val_res = self.results["val"]
test_res = self.results["test"]
idx_best = val_res.argmax()
message = "Best val %.5f (epoch: %d), corresponding test %.5f\n" % (val_res.max(),
idx_best, test_res[idx_best])
print(message)
with open(self.log_file, "a") as fid:
fid.write(message)
if __name__ == "__main__":
args = get_args()
trainer = Trainer(args)
trainer.do_training()