-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdpsgd.py
151 lines (97 loc) · 4.85 KB
/
dpsgd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import math
import torch
import uuid
import torch
from torch.optim.optimizer import Optimizer, required
import torch.nn.functional as F
PI= torch.cuda.FloatTensor([math.pi])
NORM = (torch.sqrt(2.0*PI))
def norm_pdf(x,mean,std):
y= (x-mean)/std
return (torch.exp( -(y).pow(2)/2.0)/NORM)/std
class DPSGD(Optimizer):
def __init__(self, params, lr=required, momentum=0, dampening=0,
weight_decay=0, nesterov=False,C=1,noise_multiplier= 1.0 , batch_size=256):
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
weight_decay=weight_decay, nesterov=nesterov)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
super(DPSGD, self).__init__(params, defaults)
self.batch_size = batch_size
self.C = C
self.bigger_batch = {}
self.bigger_batch_count = {}
self.noise_multiplier = noise_multiplier
def __setstate__(self, state):
super(SGD, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('nesterov', False)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
noise_std =self.noise_multiplier *self.C
loss = None
if closure is not None:
loss = closure()
norm = 0
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if not hasattr(p,'myid'):
p.myid = uuid.uuid4()
self.bigger_batch[p.myid] = torch.zeros_like(grad)
self.bigger_batch_count[p.myid] = torch.cuda.LongTensor(size=[1]).zero_() if self.bigger_batch[p.myid].is_cuda else torch.LongTensor(size=[1]).zero_()
norm+=grad.norm()**2.0
norm=norm**(0.5)
for group in self.param_groups:
for p in group['params']:
grad = p.grad.data
cliped = (grad*self.C) /( torch.max(norm,torch.ones_like(norm)*self.C))
self.bigger_batch [p.myid].add_(cliped)
self.bigger_batch_count[p.myid]+=1
if self.bigger_batch_count[p.myid] == self.batch_size:
for group in self.param_groups:
for p in group['params']:
base = self.bigger_batch[p.myid]
my_rand = torch.zeros_like(base)
my_rand.normal_(mean=0, std =noise_std )
base.add_(my_rand)
base = base/float(self.batch_size)
self.bigger_batch[p.myid] =base
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
for p in group['params']:
if p.grad is None:
continue
d_p = self.bigger_batch[p.myid]
if weight_decay != 0:
d_p.add_(weight_decay, p.data)
if momentum != 0:
param_state = self.state[p]
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(1 - dampening, d_p)
if nesterov:
d_p = d_p.add(momentum, buf)
else:
d_p = buf
p.data.add_(-group['lr'], d_p)
self.bigger_batch[p.myid].zero_()
self.bigger_batch_count[p.myid].zero_()
return loss