-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
249 lines (204 loc) · 10.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from license_plate_dataset import LicensePlateDataset, LicensePlateVocab
from license_plate_model import LicensePlateModel
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import torch.optim as optim
import matplotlib.font_manager as fm
from tqdm import tqdm
import shutil
import os
import time
import argparse
from torch.utils.tensorboard import SummaryWriter
# 定义默认参数
DEFAULT_TRAIN_FOLDER = r'./datasets/train'
DEFAULT_VAL_FOLDER = r'./datasets/val'
DEFAULT_BATCH_SIZE = 64
DEFAULT_LEARNING_RATE = 0.0001
DEFAULT_NUM_EPOCHS = 200
DEFAULT_CHECKPOINT_PATH = 'last_model.pth'
img_size = 224
# 最大序列长度
max_length = 16
num_epochs = 200
# 设置中文字体
font_path = "C:/Windows/Fonts/simhei.ttf" # 可以选择其他中文字体
prop = fm.FontProperties(fname=font_path)
checkpoints_folder = 'checkpoints'
# 词汇表
vocab_list = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '云', '京', '冀', '吉', '学', '宁', '川', '挂', '新', '晋', '桂', '沪', '津', '浙', '渝', '湘', '琼', '甘', '皖', '粤', '苏', '蒙', '藏', '警', '豫', '贵', '赣', '辽', '鄂', '闽', '陕', '青', '鲁', '黑']
vocab = LicensePlateVocab(vocab_list)
def get_train_transform(default_transform=True):
if default_transform:
chosen_transform = transforms.Compose([
transforms.Resize((img_size, img_size)),
transforms.ToTensor()
])
print(f'Using default transform')
else:
chosen_transform = transforms.Compose([
transforms.Resize((img_size, img_size)),
transforms.RandomResizedCrop(img_size, scale=(0.9, 1.05)),
transforms.RandomRotation(5, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.03),
transforms.RandomPerspective(distortion_scale=0.5, p=0.5),
transforms.ToTensor(),
transforms.RandomErasing(p=0.5, scale=(0.001, 0.005), ratio=(0.5, 2), value=(1.0, 0.0, 0.0)) # 随机用灰色方框填充
])
print(f'Using transform with random rotation, color jitter, and random resized crop')
return chosen_transform
# 训练函数
def train(model, train_loader, val_loader, criterion, optimizer, num_epochs, start_epoch, device, best_acc, best_loss):
# 使用日期作为目录名
writer = SummaryWriter(log_dir=f'runs/log_{time.strftime("%Y%m%d_%H%M%S")}')
best_val_loss = best_loss
best_val_accuracy = best_acc
print(f'pretrained model best_acc: {best_val_accuracy}, best_loss: {best_val_loss}')
train_loader.dataset.transform = get_train_transform(False)
data_iter = iter(train_loader)
images, labels = next(data_iter)
# 显示图像和标签
fig, axes = plt.subplots(4, 4, figsize=(10, 10))
for i in range(4):
for j in range(4):
img = images[i*4+j].permute(1, 2, 0).numpy()
label = labels[i*4+j].numpy()
label_str = vocab.sequence_to_text(label)
axes[i][j].imshow(img)
axes[i][j].set_title(label_str, fontproperties=prop)
axes[i][j].axis('off')
# 保存图像
plt.savefig('batch_images.png')
for epoch in range(start_epoch, num_epochs):
model.train()
train_loader.dataset.transform = get_train_transform(epoch % 2 != 0)
train_loss = 0.0
train_loader_tqdm = tqdm(train_loader, desc=f'Epoch {epoch+1}/{num_epochs}', unit='batch')
images_count = 0
for images, tgt in train_loader_tqdm:
images = images.to(device)
tgt_input = tgt[:, :-1].to(device)
tgt_output = tgt[:, 1:].to(device)
optimizer.zero_grad()
outputs = model(images, tgt_input)
outputs = outputs.permute(0, 2, 1)
loss = criterion(outputs, tgt_output)
loss.backward()
optimizer.step()
images_count += images.size(0)
train_loss += loss.item() * images.size(0)
train_loader_tqdm.set_postfix(loss=f"{train_loss / images_count:.8f}")
train_loader_tqdm.update(1)
train_loss = train_loss / images_count
val_loss, val_accuracy, exact_match_accuracy = validate(model, val_loader, criterion, device)
writer.add_scalar('Loss/train', train_loss, epoch)
writer.add_scalar('Loss/val', val_loss, epoch)
writer.add_scalar('Accuracy/val', val_accuracy, epoch)
writer.add_scalar('Accuracy/exact_match_val', exact_match_accuracy, epoch)
print(f'Epoch {epoch + 1}/{num_epochs}, Train Loss: {train_loss:.8f}, Val Loss: {val_loss:.8f}, Val Accuracy: {val_accuracy:.4f}, Exact Match Accuracy: {exact_match_accuracy:.4f}')
save_best = False
if val_loss < best_val_loss:
best_val_loss = val_loss
save_best = True
if val_accuracy > best_val_accuracy:
best_val_accuracy = val_accuracy
save_best = True
save_checkpoint(model, optimizer, epoch + 1, train_loss, val_accuracy, val_loss, filename=f'last_model.pth')
if save_best:
shutil.copyfile(os.path.join(checkpoints_folder, f'last_model.pth'), os.path.join(checkpoints_folder, f'best_model_{epoch+1}_{val_accuracy:.4f}_{exact_match_accuracy:.4f}_{val_loss:.8f}.pth'))
print(f'Best model saved (epoch {epoch+1}, val_accuracy {val_accuracy:.4f}, val_loss {val_loss:.8f})')
writer.close()
# 验证函数
def validate(model, val_loader, criterion, device):
model.eval()
val_loss = 0.0
correct = 0
exact_match_correct = 0
total = 0
images_count = 0
val_loader_tqdm = tqdm(val_loader, desc='Validation', unit='batch', leave=False)
with torch.no_grad():
for images, labels in val_loader_tqdm:
images = images.to(device)
labels = labels.to(device)
outputs = model(images, labels[:, :-1])
outputs = outputs.permute(0, 2, 1)
loss = criterion(outputs, labels[:, 1:])
val_loss += loss.item() * images.size(0)
images_count += images.size(0)
_, predicted = torch.max(outputs, 1)
# 创建一个掩码,标识哪些位置不是 vocab.pad_idx
non_pad_mask = (labels[:, 1:] != vocab.pad_idx)
# 使用掩码来计算正确的预测
correct += (predicted[non_pad_mask] == labels[:, 1:][non_pad_mask]).sum().item()
total += non_pad_mask.sum().item()
# 计算每个序列的完全匹配情况
exact_match_correct += ((predicted == labels[:, 1:]) | ~non_pad_mask).all(dim=1).sum().item()
val_loader_tqdm.set_postfix(loss=f"{val_loss/images_count:.5f}")
val_loss = val_loss / images_count
accuracy = correct / total
exact_match_accuracy = exact_match_correct / images_count
return val_loss, accuracy, exact_match_accuracy
def save_checkpoint(model, optimizer, epoch, loss, best_acc, best_loss, filename):
if not os.path.exists(checkpoints_folder):
os.makedirs(checkpoints_folder)
print(f'Saving checkpoint {filename} (epoch {epoch}, loss {loss}, best_acc {best_acc}, best_loss {best_loss})')
state = {
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
'best_acc': best_acc,
'best_loss': best_loss
}
torch.save(state, os.path.join(checkpoints_folder, filename))
def load_checkpoint(model, optimizer, filename):
state = torch.load(os.path.join(checkpoints_folder, filename))
model.load_state_dict(state['model_state_dict'])
optimizer.load_state_dict(state['optimizer_state_dict'])
epoch = state['epoch']
loss = state['loss']
if 'best_acc' in state:
best_acc = state['best_acc']
else:
best_acc = 0.0
if 'best_loss' in state:
best_loss = state['best_loss']
else:
best_loss = float('inf')
print(f'Loaded checkpoint {filename} (epoch {epoch}, loss {loss})')
return model, optimizer, epoch, loss, best_acc, best_loss
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Train a license plate recognition model")
parser.add_argument('--train_folder', type=str, default=DEFAULT_TRAIN_FOLDER, help='Path to the training dataset folder')
parser.add_argument('--val_folder', type=str, default=DEFAULT_VAL_FOLDER, help='Path to the validation dataset folder')
parser.add_argument('--batch_size', type=int, default=DEFAULT_BATCH_SIZE, help='Batch size for training')
parser.add_argument('--learning_rate', type=float, default=DEFAULT_LEARNING_RATE, help='Learning rate for the optimizer')
parser.add_argument('--num_epochs', type=int, default=DEFAULT_NUM_EPOCHS, help='Number of epochs to train')
parser.add_argument('--checkpoint_path', type=str, default=DEFAULT_CHECKPOINT_PATH, help='Path to the model checkpoint file')
args = parser.parse_args()
# 创建数据集和数据加载器
train_dataset = LicensePlateDataset(args.train_folder, vocab, max_length, get_train_transform(True))
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=8)
val_dataset = LicensePlateDataset(args.val_folder, vocab, max_length, get_train_transform(True))
val_loader = DataLoader(val_dataset, batch_size=args.batch_size // 4, shuffle=False, num_workers=4)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = LicensePlateModel(pad_idx=vocab.pad_idx, d_model=64, nhead_encoder=4, nhead_decoder=4, num_encoder_layers=2, num_decoder_layers=2, dim_feedforward=512, vocab_size=len(vocab.vocab_list), max_length=max_length)
model.to(device)
# 加载mobilenetv3预训练模型
# model.backbone.load_state_dict(torch.load(r"C:\Users\mengchao\Downloads\450_act3_mobilenetv3_small.pth"), strict=False)
criterion = nn.CrossEntropyLoss(ignore_index=vocab.pad_idx)
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
# 加载检查点(如果存在)
if args.checkpoint_path and os.path.exists(os.path.join(checkpoints_folder, args.checkpoint_path)):
model, optimizer, start_epoch, train_loss, best_acc, best_loss = load_checkpoint(model, optimizer, args.checkpoint_path)
else:
start_epoch = 0
best_loss = float('inf')
best_acc = 0.0
# val_loss, val_accuracy, exact_match_accuracy = validate(model, val_loader, criterion, device)
# print(f'Val Loss: {val_loss:.8f}, Val Accuracy: {val_accuracy:.4f}, Exact Match Accuracy: {exact_match_accuracy:.4f}')
train(model, train_loader, val_loader, criterion, optimizer, args.num_epochs, start_epoch, device, best_acc, best_loss)