-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathexample6.py
106 lines (84 loc) · 3.33 KB
/
example6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
import torchvision.models as models
from torchvision import datasets, transforms
BATCH_SIZE = 32
NUM_WORKERS = 1
LR = 1e-3
data_folder = "./cats_and_dogs"
traindir = os.path.join(data_folder, 'train')
testdir = os.path.join(data_folder, 'test')
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
torch.manual_seed(31415926)
if 'cuda' in str(device):
torch.cuda.manual_seed(31415926)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_loader = data.DataLoader(
datasets.ImageFolder(traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])),
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=NUM_WORKERS)
test_loader = data.DataLoader(
datasets.ImageFolder(testdir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])),
batch_size=50,
shuffle=True,
num_workers=NUM_WORKERS)
# Definition here: https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
model = models.resnet50(pretrained=True)
# Don't train the normal layers
for param in model.parameters():
param.requires_grad = False
# Create a new output layer
model.fc = nn.Linear(2048, 2) # New layers has requires_grad = True by default
model = model.to(device)
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=LR)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test():
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for batch_idx, (data, target) in enumerate(test_loader):
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.cross_entropy(output, target, reduction='sum').item() # sum up batch loss
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
if __name__ == '__main__':
print("Using device:", device)
for epoch in range(1, 2):
train(epoch)
print("Running test...")
test()
# 95% accuracy for 1 epoch