{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "b37dee08-65d0-4f92-918d-c27e820c6d28", "metadata": {}, "outputs": [], "source": [ "# Copyright 2025 Sony Corporation" ] }, { "cell_type": "markdown", "id": "7d441cd7-cb51-4bad-bc23-4a60dc9448c3", "metadata": {}, "source": [ "## get Max F Value's meta division" ] }, { "cell_type": "code", "execution_count": null, "id": "98813dc5", "metadata": {}, "outputs": [], "source": [ "import subprocess\n", "import os\n", "import glob\n", "import shutil\n", "import sys\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "import matplotlib.patches as mpatches\n", "import matplotlib.lines as mlines" ] }, { "cell_type": "code", "execution_count": null, "id": "cbe621f8-f143-465f-b110-cff65d6f3cd1", "metadata": {}, "outputs": [], "source": [ "workdir = os.getcwd()" ] }, { "cell_type": "code", "execution_count": null, "id": "4183a726-e926-40f9-89d8-83dec88a3c0a", "metadata": {}, "outputs": [], "source": [ "fsom_experiment_name = \"Flowsom\"" ] }, { "cell_type": "code", "execution_count": null, "id": "6781f765-12f2-4794-8eac-c65ce8c6227d", "metadata": {}, "outputs": [], "source": [ "samplenames = [\"FP7000_34c\",\"Levine_32dim\",\"Levine_13dim\",\"Samusik_01\",\"Samusik_all\",]\n" ] }, { "cell_type": "code", "execution_count": null, "id": "f6b10d8e-9426-4e79-a65e-365f62a55b94", "metadata": {}, "outputs": [], "source": [ "#range of search best F \n", "xrange_dict = {\"FP7000_34c\": range(14,20,1),\n", " \"Levine_32dim\": range(14,37,1), \n", " \"Levine_13dim\": range(24,50,1),\n", " \"Samusik_01\": range(24,39,1),\n", " \"Samusik_all\":range(24,39,1)\n", " }" ] }, { "cell_type": "code", "execution_count": null, "id": "f01b4c55-a1d5-4217-b4e2-8f53e90f8d3d", "metadata": {}, "outputs": [], "source": [ "for sample_name in samplenames:\n", " print(sample_name)\n", " fsom_exp_path = os.path.join(workdir,fsom_experiment_name,sample_name) \n", " os.chdir(workdir)\n", " resdf = pd.DataFrame()\n", " meta_list = xrange_dict.get(sample_name) #samplename -> get range\n", " for meta in meta_list:\n", " directory = os.path.join(fsom_exp_path,\"%d\"%meta,\"10\") \n", " files = [file for file in os.listdir(directory) if (file.startswith(\"vseed_f1hang_\") and file.endswith(\"resh\"))]\n", " df = pd.DataFrame()\n", " for file in files:\n", " file_path = os.path.join(directory, file)\n", " # Get the numeric part from the file name and use it as an index\n", " index = int(file.split('_')[2].split('.')[0])\n", " temp_df = pd.read_csv(file_path,header=None)\n", " # set index and concatenate\n", " temp_df['index'] = index\n", " temp_df.set_index('index', inplace=True)\n", " df = pd.concat([df, temp_df])\n", " data_hang = df.rename(columns={0:\"%d\"%meta})\n", " resdf = pd.concat([resdf,data_hang],axis=1)\n", " d = pd.melt(resdf) #flowsom result\n", " max_index = resdf.mean().sort_values().idxmax()\n", " max_idx = int(max_index) - 10\n", " max_index2 = resdf.median().sort_values().idxmax()\n", " print(max_index)\n", " m = resdf.mean()\n", " filename = \"%s_meta_F.csv\"%sample_name\n", " m.to_csv(filename)" ] }, { "cell_type": "code", "execution_count": null, "id": "4175938e-0525-4403-a30a-dcb23f63ba52", "metadata": {}, "outputs": [], "source": [ "BL_experiment_name = \"BL_FlowSOM\"" ] }, { "cell_type": "code", "execution_count": null, "id": "44e09c63-4414-4df8-a924-f469c34b594c", "metadata": {}, "outputs": [], "source": [ "for sample_name in samplenames:\n", " print(sample_name)\n", " exp_path = os.path.join(workdir,BL_experiment_name,sample_name) \n", " os.chdir(workdir)\n", " resdf = pd.DataFrame()\n", " meta_list = xrange_dict.get(sample_name) #samplename -> get range\n", " data = []\n", " for meta in meta_list:\n", " directory = os.path.join(exp_path) \n", " file = os.path.join(directory,\"f1_meta_%02d_it_10_hang.hres\"%meta)\n", " with open(file,\"r\") as f:\n", " value = float(f.readline().strip())\n", " data.append((meta, value))\n", " df = pd.DataFrame(data,columns=[\"meta\",\"Value\"])\n", " filename = \"BL_%s_meta_f.csv\"%sample_name\n", " df.to_csv(filename)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.9" } }, "nbformat": 4, "nbformat_minor": 5 }