-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvertebra_pipeline.py
173 lines (140 loc) · 5.55 KB
/
vertebra_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import logging
import time
from typing import Callable, Sequence
import torch
from tqdm import tqdm
from monailabel.interfaces.tasks.infer_v2 import InferTask, InferType
from monailabel.interfaces.utils.transform import run_transforms
from monailabel.tasks.infer.basic_infer import BasicInferTask
from monailabel.transform.post import Restored
from monailabel.transform.writer import Writer
logger = logging.getLogger(__name__)
class InferVertebraPipeline(BasicInferTask):
def __init__(
self,
task_loc_spine: InferTask,
task_loc_vertebra: InferTask,
task_seg_vertebra: InferTask,
type=InferType.SEGMENTATION,
description="Combines three stages for vertebra segmentation",
**kwargs,
):
self.task_loc_spine = task_loc_spine
self.task_loc_vertebra = task_loc_vertebra
self.task_seg_vertebra = task_seg_vertebra
super().__init__(
path=None,
network=None,
type=type,
labels=task_seg_vertebra.labels,
dimension=task_seg_vertebra.dimension,
description=description,
**kwargs,
)
def pre_transforms(self, data=None) -> Sequence[Callable]:
return []
def post_transforms(self, data=None) -> Sequence[Callable]:
return []
def is_valid(self) -> bool:
return True
def _latencies(self, r, e=None):
if not e:
e = {"pre": 0, "infer": 0, "invert": 0, "post": 0, "write": 0, "total": 0}
for key in e:
e[key] = e[key] + r.get("latencies", {}).get(key, 0)
return e
def locate_spine(self, request):
req = copy.deepcopy(request)
req.update({"pipeline_mode": True})
d, r = self.task_loc_spine(req)
return d, r, self._latencies(r)
def locate_vertebra(self, request, image, label):
req = copy.deepcopy(request)
req.update({"image": image, "label": label, "pipeline_mode": True})
d, r = self.task_loc_vertebra(req)
return d, r, self._latencies(r)
def segment_vertebra(self, request, image, centroids):
original_size = list(image.shape)
result_mask = None
l = None
image_cached = None
count = 0
for centroid in tqdm(centroids):
# For Debuging - select few label...
# logger.info(f"Centroid: {centroid}")
# lkey = list(centroid.keys())[0]
# if lkey not in ("label_20", "label_22", "label_24"):
# continue
req = copy.deepcopy(request)
req.update(
{
"image": image,
"image_cached": image_cached,
"original_size": original_size,
"centroids": [centroid],
"pipeline_mode": True,
"logging": "ERROR" if count > 1 else "INFO",
}
)
d, r = self.task_seg_vertebra(req)
l = self._latencies(r, l)
image = d["image"]
image_cached = image
# Paste/Merge each mask
v = d["current_label"]
s = d["slices_cropped"]
m = d["pred"]
m[m > 0] = v
mask = torch.zeros_like(image)
mask[:, s[-3][0] : s[-3][1], s[-2][0] : s[-2][1], s[-1][0] : s[-1][1]] = m
if result_mask is None:
result_mask = mask
else:
result_mask = result_mask + mask
result_mask[result_mask > v] = v
count = count + 1
return result_mask, l
def __call__(self, request):
start = time.time()
request.update({"image_path": request.get("image")})
# Run first stage
d1, r1, l1 = self.locate_spine(request)
image = d1["image"]
label = d1["pred"]
# Run second stage
d2, r2, l2 = self.locate_vertebra(request, image, label)
centroids = r2["centroids"]
# Run third stage
result_mask, l3 = self.segment_vertebra(request, image, centroids)
# Finalize the mask/result
data = copy.deepcopy(request)
data.update({"pred": result_mask, "image": image})
data = run_transforms(data, [Restored(keys="pred", ref_image="image")], log_prefix="POST(P)", use_compose=False)
begin = time.time()
result_file, _ = Writer(label="pred")(data)
latency_write = round(time.time() - begin, 2)
total_latency = round(time.time() - start, 2)
result_json = {
"label_names": self.task_seg_vertebra.labels,
"centroids": centroids,
"latencies": {
"locate_spine": l1,
"locate_vertebra": l2,
"segment_vertebra": l3,
"write": latency_write,
"total": total_latency,
},
}
logger.info(f"Result Mask (aggregated/pre-restore): {result_mask.shape}; total_latency: {total_latency}")
return result_file, result_json