-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathPic2Story_Node.py
152 lines (128 loc) · 5.71 KB
/
Pic2Story_Node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# !/usr/bin/env python
# -*- coding: UTF-8 -*-
import torch
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
def tensor_to_image(tensor):
image_np = tensor.squeeze().mul(255).clamp(0, 255).byte().numpy()
image = Image.fromarray(image_np, mode='RGB')
return image
class Pic2Story_Loader:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"repo_id": ("STRING",{"default": "abhijit2111/Pic2Story"}),
"inference_mode": (["gpu_float16", "gpu", "cpu"],),
}
}
RETURN_TYPES = ("PICMODEL",)
RETURN_NAMES = ("model",)
FUNCTION = "load_main"
CATEGORY = "Pic2Story"
def load_main(self, repo_id, inference_mode):
if not repo_id:
raise ValueError("need a repo_id or local_model_path ")
if "Pic2Story" in repo_id:
mode="story"
else:
mode = "paligemma"
if mode=="story":
if inference_mode == "gpu_float16":
model = BlipForConditionalGeneration.from_pretrained(repo_id,
torch_dtype=torch.float16).to("cuda")
elif inference_mode == "gpu":
model = BlipForConditionalGeneration.from_pretrained(repo_id).to("cuda")
else:
model = BlipForConditionalGeneration.from_pretrained(repo_id)
processor = BlipProcessor.from_pretrained(repo_id)
else:
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = "cpu" if "cpu" in inference_mode else "cuda"
model = PaliGemmaForConditionalGeneration.from_pretrained(
repo_id,
torch_dtype=torch.bfloat16,
local_files_only=True
).to(device)
processor = PaliGemmaProcessor.from_pretrained(repo_id, local_files_only=True)
model={"model":model,"processor":processor,"inference_mode":inference_mode,"mode":mode}
return (model,)
class Pic2Story_Sampler:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"model": ("PICMODEL",),
"prompt": ("STRING", {"default": "a photography of"}),
}
}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("prompt",)
FUNCTION = "pic_to_story"
CATEGORY = "Pic2Story"
def pic_to_story(self, image,model, prompt):
processor=model.get("processor")
mode=model.get("mode")
inference_mode=model.get("inference_mode")
model=model.get("model")
pil_image = tensor_to_image(image)
if mode=="story":
if inference_mode == "gpu_float16":
if not prompt:
# unconditional image captioning
inputs = processor(pil_image, return_tensors="pt").to("cuda", torch.float16)
print("processor image without prompt")
else:
# conditional image captioning
inputs = processor(pil_image, prompt, return_tensors="pt").to("cuda", torch.float16)
out = model.generate(**inputs)
story_out = processor.decode(out[0], skip_special_tokens=True)
print(type(story_out))
return (story_out,)
elif inference_mode == "gpu":
if not prompt:
# unconditional image captioning
inputs = processor(pil_image, return_tensors="pt").to("cuda")
print("processor image without prompt")
else:
# conditional image captioning
inputs = processor(pil_image, prompt, return_tensors="pt").to("cuda")
out = model.generate(**inputs)
story_out = processor.decode(out[0], skip_special_tokens=True)
return (story_out,)
else:
if not prompt:
# unconditional image captioning
inputs = processor(pil_image, return_tensors="pt")
print("processor image without prompt")
else:
# conditional image captioning
inputs = processor(pil_image, prompt, return_tensors="pt")
out = model.generate(**inputs)
story_out = processor.decode(out[0], skip_special_tokens=True)
else:
device ="cpu" if "cpu" in inference_mode else "cuda"
if not prompt:
prompt= "describe en\n"
inputs = processor(text=prompt, images=pil_image,
padding="longest", do_convert_rgb=True, return_tensors="pt").to(device)
inputs = inputs.to(dtype=model.dtype)
with torch.no_grad():
output = model.generate(**inputs, max_new_tokens=128)
story_out = processor.decode(output[0], skip_special_tokens=True)
story_out=story_out.splitlines()[-1]
return (story_out,)
NODE_CLASS_MAPPINGS = {
"Pic2Story_Loader":Pic2Story_Loader,
"Pic2Story_Sampler": Pic2Story_Sampler
}
NODE_DISPLAY_NAME_MAPPINGS = {
"Pic2Story_Loader":"Pic2Story_Loader",
"Pic2Story_Sampler": "Pic2Story_Sampler"
}