-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeep_vlm_reasoners.py
509 lines (424 loc) · 18 KB
/
deep_vlm_reasoners.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
"""
# References
# https://github.com/merlresearch/SMART
# adsformers https://ui.adsabs.harvard.edu/abs/2023arXiv230201255A/abstract
# eficient vit image representations https://www.researchgate.net/profile/Denisa-Roberts/publication/370980888_Efficient_Large-Scale_Vision_Representation_Learning/links/64ecf9d99b1e56033da9d827/Efficient-Large-Scale-Vision-Representation-Learning.pdf
# prismatic vlm https://arxiv.org/pdf/2402.07865.pdf
# qformer https://arxiv.org/pdf/2301.12597
# mbert https://link.springer.com/chapter/10.1007/978-3-030-72240-1_36
# siglip https://huggingface.co/google/siglip-so400m-patch14-384
# dinov2 https://huggingface.co/facebook/dinov2-base
"""
import os
import warnings
import torch
import torch.nn as nn
warnings.filterwarnings("ignore")
import pdb
import pickle
import numpy as np
import torch.nn.functional as F
from PIL import Image
import text_encoder as gv
from layers import (
QFLayer,
CLayer,
QV_Fusion,
PuzzleMLPDecoder,
get_activation_fn,
get_activation_layer,
)
class Puzzle_Net(nn.Module):
def __init__(self, args, im_backbone, device):
super(Puzzle_Net, self).__init__()
vocab_path = args.vocab_path
with open(vocab_path, "rb") as f:
self.vocab = pickle.load(f)
self.args = args
self.device = device
self.num_opts = 5
self.out_dim = args.repr_size
self.h_sz = args.h_sz
self.model_name = args.model_name
self.use_single_image_head = args.use_single_image_head
self.word_embed = args.word_embed
self.sorted_puzzle_ids = np.sort(np.array([int(ii) for ii in args.puzzle_ids]))
self.max_val = gv.MAX_VAL + 1
# Image backbones - frozen
if args.model_name[:6] == "resnet":
self.im_repr_size = im_backbone.fc.weight.shape[1]
modules = list(im_backbone.children())[:-1]
self.im_cnn = nn.Sequential(*modules)
elif args.model_name in ["dinov2"]:
self.preprocess = args.preprocess
self.im_cnn = lambda x: self.process_dinov2(x)
self.im_backbone = im_backbone
self.im_repr_size = 768
elif args.model_name in ["siglip"]:
self.preprocess = args.preprocess
self.im_cnn = lambda x: self.process_dinov2(x)
self.im_backbone = im_backbone
self.im_repr_size = 768
# Reference adsformers and prismatic
elif args.model_name in ["fused_dinov2_siglip"]:
from transformers import AutoImageProcessor
image_processor_siglip = AutoImageProcessor.from_pretrained(
"google/siglip-base-patch16-224"
)
image_processor_dino = AutoImageProcessor.from_pretrained(
"facebook/dinov2-base"
)
self.preprocess = None
self.im_cnn = lambda x: self.process_fused_vision(
x, image_processor_siglip, image_processor_dino
)
self.im_backbone = im_backbone
self.im_repr_size = 768 + 768
else:
raise "unknown model_name %s" % (args.model_name)
self.create_puzzle_head(args)
# Language backbones - frozen
if args.word_embed in ["siglip"]:
self.siglip_dim = 768
self.q_MLP = nn.Sequential(
nn.Linear(self.siglip_dim, self.h_sz),
get_activation_layer(args.run_baseline),
nn.Linear(self.h_sz, self.out_dim),
)
else:
# bert and mbert
word_dim = gv.word_dim
self.q_emb = nn.Identity()
self.q_lstm = nn.GRU(
int(word_dim),
int(self.h_sz),
num_layers=1,
batch_first=True,
bidirectional=True,
bias=args.run_baseline,
)
self.q_MLP = nn.Linear(self.h_sz * 2, self.out_dim)
self.o_encoder = nn.Sequential(
nn.Embedding(len(self.vocab), self.out_dim, max_norm=1),
nn.Linear(self.out_dim, self.out_dim),
get_activation_layer(args.run_baseline),
)
if args.qf_layer:
composite_dim = 2 * 768 + self.args.repr_size
self.qv_fusion = QV_Fusion(
composite_dim, self.out_dim, args=self.args
) # 1664
self.c = CLayer(dim=composite_dim, args=self.args)
else:
if not args.run_baseline:
self.qv_fusion = QV_Fusion(
2 * self.out_dim, self.out_dim, args=self.args
)
self.c = CLayer(dim=2 * self.out_dim, args=self.args)
else:
self.qv_fusion = nn.Sequential(
nn.Linear(self.out_dim * 2, self.out_dim),
nn.ReLU(),
nn.Linear(self.out_dim, self.out_dim),
nn.ReLU(),
)
if args.qf_layer:
self.qf = QFLayer(num_heads=args.num_heads, args=self.args)
self.create_puzzle_tail(args)
def process_dinov2(self, x):
x = self.decode_image(x)
inputs = self.preprocess(images=x, do_rescale=True, return_tensors="pt").to(
self.device
)
outputs = self.im_backbone(**inputs)
return outputs.last_hidden_state.mean(1)
def process_fused_vision(self, x, image_processor_siglip, image_processor_dino):
x = self.decode_image(x)
inputs_din = image_processor_dino(
images=x, do_rescale=True, return_tensors="pt"
).to(self.device)
inputs_sig = image_processor_siglip(
images=x, do_rescale=True, return_tensors="pt"
).to(self.device)
im_backbone_din, im_backbone_sig = self.im_backbone
im_backbone_din = im_backbone_din.to(self.device)
im_backbone_sig = im_backbone_sig.to(self.device)
outputs_din = im_backbone_din(**inputs_din)
outputs_sig = im_backbone_sig(**inputs_sig)
return torch.cat(
[
outputs_din.last_hidden_state.mean(1),
outputs_sig.last_hidden_state.mean(1),
],
dim=1,
)
def create_puzzle_head(self, args):
if args.use_single_image_head:
self.im_encoder = nn.Sequential(
nn.Linear(self.im_repr_size, self.out_dim),
get_activation_layer(args.run_baseline),
nn.Linear(self.out_dim, self.out_dim),
)
else:
self.puzzle_ids = args.puzzle_ids
im_encoder = [nn.Sequential(nn.Linear(self.out_dim, 1))]
for i in range(1, gv.num_puzzles + 1):
im_encoder.append(
nn.Sequential(
nn.Linear(self.im_repr_size, self.out_dim),
get_activation_layer(args.run_baseline),
nn.Linear(self.out_dim, self.out_dim),
)
)
self.im_encoder = nn.ModuleList(im_encoder)
def create_puzzle_tail(self, args):
self.puzzle_ids = args.puzzle_ids
ans_decoder = [
nn.Sequential(nn.Linear(self.out_dim, 1))
] # start with a dummy as we are 1-indexed wrt puzzle ids.
if args.puzzles == "all":
puzzles = range(1, gv.num_puzzles + 1)
else:
puzzles = self.puzzle_ids
for pid in puzzles:
num_classes = gv.NUM_CLASSES_PER_PUZZLE[str(pid)]
if int(pid) not in gv.SEQ_PUZZLES:
if not args.run_baseline:
dec = PuzzleMLPDecoder(self.out_dim, num_classes)
ans_decoder.append(dec)
else:
ans_decoder.append(
nn.Sequential(
nn.Linear(self.out_dim, self.out_dim),
nn.ReLU(),
nn.Linear(self.out_dim, self.out_dim),
nn.ReLU(),
nn.Linear(self.out_dim, num_classes),
)
)
else:
if args.run_baseline:
ans_decoder.append(
nn.LSTM(
int(self.out_dim),
int(num_classes),
num_layers=1,
batch_first=True,
)
)
else:
ans_decoder.append(
nn.GRU(
int(self.out_dim),
int(num_classes),
num_layers=1,
batch_first=True,
)
)
self.ans_decoder = nn.ModuleList(ans_decoder)
def decode_image(self, im_list):
"""convert torch tensor images back to Image."""
# im_list = (im_list +1)/2. # this is in range [0, 1].
im_list = (im_list.permute(0, 2, 3, 1) * 255).cpu().numpy().astype("uint8")
im_list = [
Image.fromarray(im_list[ii]) for ii in range(len(im_list))
] # convert im
return im_list
def save_grad_hook(self):
self.vis_grad = None
def bwd_hook(module, in_grad, out_grad):
self.vis_grad = out_grad
return bwd_hook
def save_fwd_hook(self):
self.vis_conv = None
def fwd_hook(__, _, output):
self.vis_conv = output
return fwd_hook
def encode_image(self, im, pids=None):
with torch.no_grad():
x = self.im_cnn(im).squeeze()
if len(x.shape) == 1:
x = x.unsqueeze(0)
if self.use_single_image_head:
y = self.im_encoder(x)
else:
y = torch.zeros(len(im), self.out_dim).to(self.device)
for t in range(len(self.puzzle_ids)):
idx = pids == int(self.puzzle_ids[t])
idx = idx.to(self.device)
if idx.sum() > 0:
y[idx] = get_activation_fn(self.args.run_baseline)(
self.im_encoder[int(self.puzzle_ids[t])](x[idx])
)
return y
def decode_text(self, text):
get_range = lambda x: range(1, x) if x < 70 else range(x - 70 + 4, x)
tt = text.cpu()
text = [
" ".join(
[
self.vocab.idx2word[int(j)]
for j in tt[i][get_range(torch.nonzero(tt[i])[-1])]
]
)
for i in range(len(tt))
]
return text
def encode_text(self, text):
if self.word_embed in ["mbert", "bert"]:
text = self.decode_text(text)
q_enc = torch.zeros(len(text), gv.max_qlen, gv.word_dim).to(self.device)
for ii, tt in enumerate(text):
q_repr = gv.word_embed(tt)
q_enc[ii, : min(gv.max_qlen, len(q_repr)), :] = q_repr
x, (h, _) = self.q_lstm(q_enc.float())
x = get_activation_fn(self.args.run_baseline)(self.q_MLP(x.mean(1)))
elif self.word_embed in ["siglip"]:
text = self.decode_text(text)
# An encoded seq of tokens for mha in qf layer
if self.args.qf_layer:
q_enc = torch.zeros(len(text), gv.max_qlen, gv.word_dim).to(self.device)
for ii, tt in enumerate(text):
q_repr = gv.word_embed(tt)
q_enc[ii, : min(gv.max_qlen, len(q_repr)), :] = q_repr
else:
# as siglip encodes the sequence
x = gv.word_embed(text)
x = get_activation_fn(self.args.run_baseline)(self.q_MLP(x))
return q_enc.float() if self.args.qf_layer else x
def seq_decoder(self, decoder, repr):
"""run the LSTM decoder sequentially for k steps"""
out = [None] * gv.MAX_DECODE_STEPS
hx = None
for k in range(int(gv.MAX_DECODE_STEPS)):
try:
out[k], hx = decoder(repr, hx)
except:
pdb.set_trace()
return out
def decode_individual_puzzles(self, repr, pids):
upids = torch.unique(pids)
out_reprs = {}
for t in range(len(upids)):
idx = pids == upids[t]
key = str(upids[t].item())
key_idx = (
np.where(int(key) == np.array(self.sorted_puzzle_ids))[0][0] + 1
) # +1 because we use 1-indexed.
if upids[t] not in gv.SEQ_PUZZLES:
out_reprs[int(key)] = self.ans_decoder[key_idx](repr[idx])
else:
out_reprs[int(key)] = self.seq_decoder(
self.ans_decoder[key_idx], repr[idx]
)
return out_reprs
def forward(self, im, q=None, puzzle_ids=None):
q_repr = self.encode_text(q)
im_repr = self.encode_image(im.float(), puzzle_ids).float()
if not self.args.run_baseline:
if self.args.qf_layer:
qf_out = self.qf(im_repr, q_repr)
qv_repr = self.qv_fusion(self.c([im_repr, q_repr.mean(1), qf_out]))
else:
qv_repr = self.qv_fusion(self.c([im_repr, q_repr]))
qvo_repr = self.decode_individual_puzzles(qv_repr, puzzle_ids)
return qvo_repr
else:
qv_feat = self.qv_fusion(torch.cat([im_repr, q_repr], dim=1))
qvo_feat = self.decode_individual_puzzles(qv_feat, puzzle_ids)
return qvo_feat
def load_pretrained_models(args, model_name, model=None):
if args.test and model is not None:
model_path = os.path.join(
args.location,
"ckpt_%s_%s_%s.pth" % (args.model_name, args.word_embed, args.seed),
)
print("test: loading checkpoint %s ..." % (model_path))
checkpoint = torch.load(model_path)
model.load_state_dict(checkpoint["net"], strict=True)
return
preprocess = None
if args.model_name in ["resnet50"]:
from torchvision.models import ResNet50_Weights, resnet50
weights = ResNet50_Weights.DEFAULT
model = resnet50(weights=weights)
preprocess = weights.transforms()
# Make sure image backbone is frozen
print(
f"\n Number trainable params before explicit freezing of image backb {sum(p.numel() for p in model.parameters() if p.requires_grad)}"
)
for param in model.parameters():
param.requires_grad = False
print(
f"\n Number trainable params after explicit freezing of image backb {sum(p.numel() for p in model.parameters() if p.requires_grad)}"
)
elif args.model_name == "dinov2":
from transformers import AutoImageProcessor, Dinov2Model
image_processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
model = Dinov2Model.from_pretrained("facebook/dinov2-base")
preprocess = image_processor
print(
f"\n Number trainable params before explicit freezing of image backb {sum(p.numel() for p in model.parameters() if p.requires_grad)}"
)
for param in model.parameters():
param.requires_grad = False
print(
f"\n Number trainable params after explicit freezing of image backb {sum(p.numel() for p in model.parameters() if p.requires_grad)}"
)
elif args.model_name == "siglip":
from transformers import (
AutoImageProcessor,
SiglipVisionModel,
)
image_processor = AutoImageProcessor.from_pretrained(
"google/siglip-base-patch16-224"
)
model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224")
preprocess = image_processor
print(
f"\n Number trainable params before explicit freezing of image backb {sum(p.numel() for p in model.parameters() if p.requires_grad)}"
)
for param in model.parameters():
param.requires_grad = False
print(
f"\n Number trainable params after explicit freezing of image backb {sum(p.numel() for p in model.parameters() if p.requires_grad)}"
)
elif args.model_name == "fused_dinov2_siglip":
from transformers import AutoImageProcessor, SiglipVisionModel, Dinov2Model
model_siglip = SiglipVisionModel.from_pretrained(
"google/siglip-base-patch16-224"
)
print(
f"\n Number trainable params before explicit freezing of image backb {sum(p.numel() for p in model_siglip.parameters() if p.requires_grad)}"
)
for param in model_siglip.parameters():
param.requires_grad = False
print(
f"\n Number trainable params after explicit freezing of image backb {sum(p.numel() for p in model_siglip.parameters() if p.requires_grad)}"
)
model_dino = Dinov2Model.from_pretrained("facebook/dinov2-base")
model = (model_dino, model_siglip)
preprocess = None
else:
print("model name is %s: not loading pre-trained model." % (args.model_name))
if args.pretrained:
if os.path.isfile(args.pretrained):
print("=> loading checkpoint '{}'".format(args.pretrained))
checkpoint = torch.load(args.pretrained, map_location="cpu")
# rename moco pre-trained keys
state_dict = checkpoint["state_dict"]
for k in list(state_dict.keys()):
# retain only encoder up to before the embedding layer
if k.startswith("module.encoder") and not k.startswith(
"module.encoder.fc"
):
# remove prefix
state_dict[k[len("module.encoder.") :]] = state_dict[k]
# delete renamed or unused k
del state_dict[k]
msg = model.load_state_dict(state_dict, strict=False)
assert set(msg.missing_keys) == {"fc.weight", "fc.bias"}
print("=> loaded pre-trained model '{}'".format(args.pretrained))
else:
print("=> no checkpoint found at '{}'".format(args.pretrained))
return model, preprocess