-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluation.py
461 lines (378 loc) · 19.3 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
from PIL import Image
from utils import precision_score, recall_score, f1_score
from constant import TRAIN_CLASSES, VALIDATION_CLASSES
class EvaluationBase:
def __init__(self, model_handler, image_processor, dataset_path, data_type):
"""
Initialize the evaluation base class.
Args:
model_handler (BaseModelHandler): The model handler.
image_processor (ImageProcessor): The image processor.
dataset_path (str): Path to the dataset.
data_type (str): Type of data being processed ('train' or 'validation').
"""
self.model_handler = model_handler
self.image_processor = image_processor
self.dataset_path = dataset_path
self.data_type = data_type
self.correct_predictions = 0
self.total_predictions = 0
self.y_true = []
self.y_pred = []
def process_entry(self, entry, acc_list, photo2answer):
"""
Process a single entry and classify objects in the image.
Args:
entry (dict): Data entry to process.
acc_list (list): List to accumulate accuracy data.
photo2answer (dict): Dictionary to map photo paths to predictions.
Returns:
None
"""
raise NotImplementedError("This method should be implemented by subclasses.")
def calculate_metrics(self, acc_list):
"""
Calculate evaluation metrics including accuracy, F1 score, precision, and recall.
Returns:
dict: Evaluation metrics.
"""
accuracy = (self.correct_predictions / self.total_predictions) * 100 if self.total_predictions else 0
metrics = {
"estimated_accuracy": f"{accuracy:.2f}%"
}
for avg in ['macro', 'micro', 'weighted']:
precision = precision_score(self.y_true, self.y_pred, average=avg) * 100
recall = recall_score(self.y_true, self.y_pred, average=avg) * 100
f1 = f1_score(self.y_true, self.y_pred, average=avg) * 100
metrics.update({
f"precision_{avg}": f"{precision:.2f}%",
f"recall_{avg}": f"{recall:.2f}%",
f"f1_score_{avg}": f"{f1:.2f}%",
})
metrics.update({
"acc_list": acc_list,
"num_processed_data": int(self.total_predictions / 5),
})
return metrics
def _generate_prompt(self, obj_num):
"""
Generate a prompt based on the dataset name, data type, and object number.
Args:
obj_num (int): Object number.
Returns:
str: Generated prompt.
"""
raise NotImplementedError("This method should be overridden by subclasses.")
def extract_classes(self, text):
"""
Extract the classes following obj1, obj2, obj3, obj4, and obj5 from the given text.
Args:
text (str): The input text containing class information.
Returns:
list: A list of classes ordered by obj1, obj2, obj3, obj4, obj5.
"""
classes = [''] * 5 # Initialize a list with 5 empty strings
lines = text.split('\n')
for line in lines:
if 'obj1:' in line:
classes[0] = line.split('obj1:')[1].strip().strip("'").replace(".", "").replace("'", "").replace("*", "").replace(" ", "").lower()
elif 'obj2:' in line:
classes[1] = line.split('obj2:')[1].strip().strip("'").replace(".", "").replace("'", "").replace("*", "").replace(" ", "").lower()
elif 'obj3:' in line:
classes[2] = line.split('obj3:')[1].strip().strip("'").replace(".", "").replace("'", "").replace("*", "").replace(" ", "").lower()
elif 'obj4:' in line:
classes[3] = line.split('obj4:')[1].strip().strip("'").replace(".", "").replace("'", "").replace("*", "").replace(" ", "").lower()
elif 'obj5:' in line:
classes[4] = line.split('obj5:')[1].strip().strip("'").replace(".", "").replace("'", "").replace("*", "").replace(" ", "").lower()
return classes
class SingleObjectEvaluation(EvaluationBase):
def _generate_prompt(self, obj_num, dataset_name):
"""
Generate a prompt based on the dataset name, data type, and object number.
Args:
obj_num (int): Object number.
Returns:
str: Generated prompt.
"""
if self.data_type == 'train':
if dataset_name == "COCO":
class_list = ", ".join(TRAIN_CLASSES["COCO"])
elif dataset_name == "ADE":
class_list = ", ".join(TRAIN_CLASSES["ADE"])
else:
raise ValueError(f"Unknown dataset: {dataset_name}")
else:
if dataset_name == "COCO":
class_list = ", ".join(VALIDATION_CLASSES["COCO"])
elif dataset_name == "ADE":
class_list = ", ".join(VALIDATION_CLASSES["ADE"])
else:
raise ValueError(f"Unknown dataset: {dataset_name}")
return f"User: Select the single, most appropriate class for Obj.{obj_num} located within the red bounding box from the following list: {class_list}. Your response should consist solely of the class name that Obj.{obj_num} belongs to, formatted as only the class name, without any extra characters or punctuation."
def process_entry(self, entry, acc_list, photo2answer):
"""
Process a single entry and classify objects in the image.
Args:
entry (dict): Data entry to process.
acc_list (list): List to accumulate accuracy data.
photo2answer (dict): Dictionary to map photo paths to predictions.
Returns:
None
"""
for index in range(1, 6): # Each entry has 5 objects
image_path = self.dataset_path + entry["folder"].replace("jpg", "png")
image = Image.open(image_path)
prompt = self._generate_prompt(index, entry["data_source"])
processed_image = self.image_processor.preprocess_image(image)
predicted_class = self.model_handler.generate_response(prompt, processed_image)
entry["objects"][index - 1]["prediction"] = predicted_class
photo2answer[image_path.split("/")[-1] + "-" + str(index)] = predicted_class
true_class = entry["objects"][index - 1]["name"].lower()
pred_class = predicted_class.lower()
self.y_true.append(true_class)
self.y_pred.append(pred_class)
if pred_class == true_class:
self.correct_predictions += 1
acc_list[index - 1] += 1
self.total_predictions += 5
class MultiObjectEvaluation(EvaluationBase):
def segment_classes(self, response):
"""
Segment out class labels from the given response string.
Args:
response (str): The response string in the format "obj1: <class1>, obj2: <class2>, obj3: <class3>, obj4: <class4>, obj5: <class5>".
Returns:
list: A list of segmented class labels.
"""
segments = response.split(", ")
classes = [segment.split(": ")[1] for segment in segments]
return classes
def _generate_prompt(self, dataset_name):
"""
Generate a prompt based on the dataset name, data type, and object number.
Args:
obj_num (int): Object number.
Returns:
str: Generated prompt.
"""
prompt = "Given the classes: <50 classes>. There are five red bounding boxes in this image. For each object within the red bounding boxes, identify its class from the list. Provide the class names in the format: 'obj1: <class1>, obj2: <class2>, obj3: <class3>, obj4: <class4>, obj5: <class5>', with no additional words or punctuation. For example: obj1: class, obj2: class, obj3: class, obj4: class, obj5: class. Replace class with the actual names of the classes from your class list. Ensure that no placeholders or brackets are used around the class names and that no additional words or punctuation are added to the response."
if self.data_type == 'train':
if dataset_name == "COCO":
class_list = ", ".join(TRAIN_CLASSES["COCO"])
elif dataset_name == "ADE":
class_list = ", ".join(TRAIN_CLASSES["ADE"])
else:
raise ValueError(f"Unknown dataset: {dataset_name}")
else:
if dataset_name == "COCO":
class_list = ", ".join(VALIDATION_CLASSES["COCO"])
elif dataset_name == "ADE":
class_list = ", ".join(VALIDATION_CLASSES["ADE"])
else:
raise ValueError(f"Unknown dataset: {dataset_name}")
return prompt.replace("<50 classes>", class_list)
def process_entry(self, entry, acc_list, photo2answer):
"""
Process a single entry and classify objects in the image.
Args:
entry (dict): Data entry to process.
acc_list (list): List to accumulate accuracy data.
photo2answer (dict): Dictionary to map photo paths to predictions.
Returns:
None
"""
image_path = self.dataset_path + entry["folder"].replace("jpg", "png")
image = Image.open(image_path)
prompt = self._generate_prompt(entry["data_source"])
processed_image = self.image_processor.preprocess_image(image)
predicted_class = self.model_handler.generate_response(prompt, processed_image)
photo2answer[image_path.split("/")[-1]] = predicted_class
try:
predicted_class = self.segment_classes(predicted_class)
print("predicted_class: ", predicted_class)
except Exception as e:
self.total_predictions += 5
for index in range(1, 6): # Each entry has 5 objects
if len(predicted_class) >= index:
entry["objects"][index - 1]["prediction"] = predicted_class[index - 1]
true_class = entry["objects"][index - 1]["name"].lower()
pred_class = predicted_class[index - 1].lower()
self.y_true.append(true_class)
self.y_pred.append(pred_class)
if pred_class == true_class:
self.correct_predictions += 1
acc_list[index - 1] += 1
self.total_predictions += 5
class StudentForcingEvaluation(EvaluationBase):
def segment_classes(self, response):
"""
Segment out class labels from the given response string.
Args:
response (str): The response string in the format "obj1: <class1>, obj2: <class2>, obj3: <class3>, obj4: <class4>, obj5: <class5>".
Returns:
list: A list of segmented class labels.
"""
segments = response.split(", ")
classes = [segment.split(": ")[1] for segment in segments]
return classes
def _generate_prompt(self, dataset_name):
"""
Generate a prompt based on the dataset name, data type, and object number.
Args:
obj_num (int): Object number.
Returns:
str: Generated prompt.
"""
prompt = "Given the classes: <50 classes>. There are five red bounding boxes in this image. For each object within the red bounding boxes, identify its class from the list. Provide the class names in the format: 'obj1: <class1>, obj2: <class2>, obj3: <class3>, obj4: <class4>, obj5: <class5>', with no additional words or punctuation. For example: obj1: class, obj2: class, obj3: class, obj4: class, obj5: class. Replace class with the actual names of the classes from your class list. Ensure that no placeholders or brackets are used around the class names and that no additional words or punctuation are added to the response."
if self.data_type == 'train':
if dataset_name == "COCO":
class_list = ", ".join(TRAIN_CLASSES["COCO"])
elif dataset_name == "ADE":
class_list = ", ".join(TRAIN_CLASSES["ADE"])
else:
raise ValueError(f"Unknown dataset: {dataset_name}")
else:
if dataset_name == "COCO":
class_list = ", ".join(VALIDATION_CLASSES["COCO"])
elif dataset_name == "ADE":
class_list = ", ".join(VALIDATION_CLASSES["ADE"])
else:
raise ValueError(f"Unknown dataset: {dataset_name}")
return prompt.replace("<50 classes>", class_list)
def process_entry(self, entry, acc_list, photo2answer):
"""
Process a single entry and classify objects in the image.
Args:
entry (dict): Data entry to process.
acc_list (list): List to accumulate accuracy data.
photo2answer (dict): Dictionary to map photo paths to predictions.
Returns:
None
"""
prompt = self._generate_prompt(entry["data_source"])
for index in range(1, 6): # Each entry has 5 objects
image_path = self.dataset_path + entry["folder"].replace("jpg", "png")
image = Image.open(image_path)
if index == 1:
cumulative_prompt = prompt + f" obj{index}:"
else:
cumulative_prompt = cumulative_prompt + f", obj{index}:"
processed_image = self.image_processor.preprocess_image(image)
predicted_class_str = self.model_handler.generate_response(cumulative_prompt, processed_image)
try:
predicted_class = self.segment_classes(predicted_class_str)
print("predicted_class: ", predicted_class)
except Exception as e:
self.total_predictions += 5 - index + 1
break
photo2answer[image_path.split("/")[-1] + "-" + str(index)] = predicted_class_str
if len(predicted_class) >= index:
entry["objects"][index - 1]["prediction"] = predicted_class[index - 1]
true_class = entry["objects"][index - 1]["name"].lower()
pred_class = predicted_class[index - 1].lower()
cumulative_prompt += " " + pred_class
self.y_true.append(true_class)
self.y_pred.append(pred_class)
if pred_class == true_class:
self.correct_predictions += 1
acc_list[index - 1] += 1
else:
self.total_predictions += 5 - index + 1
break
self.total_predictions += 5
class TeacherForcingEvaluation(EvaluationBase):
def segment_classes(self, response):
"""
Segment out class labels from the given response string.
Args:
response (str): The response string in the format "obj1: <class1>, obj2: <class2>, obj3: <class3>, obj4: <class4>, obj5: <class5>".
Returns:
list: A list of segmented class labels.
"""
segments = response.split(", ")
classes = [segment.split(": ")[1] for segment in segments]
return classes
def _generate_prompt(self, dataset_name):
"""
Generate a prompt based on the dataset name, data type, and object number.
Args:
obj_num (int): Object number.
Returns:
str: Generated prompt.
"""
prompt = "Given the classes: <50 classes>. There are five red bounding boxes in this image. For each object within the red bounding boxes, identify its class from the list. Provide the class names in the format: 'obj1: <class1>, obj2: <class2>, obj3: <class3>, obj4: <class4>, obj5: <class5>', with no additional words or punctuation. For example: obj1: class, obj2: class, obj3: class, obj4: class, obj5: class. Replace class with the actual names of the classes from your class list. Ensure that no placeholders or brackets are used around the class names and that no additional words or punctuation are added to the response."
if self.data_type == 'train':
if dataset_name == "COCO":
class_list = ", ".join(TRAIN_CLASSES["COCO"])
elif dataset_name == "ADE":
class_list = ", ".join(TRAIN_CLASSES["ADE"])
else:
raise ValueError(f"Unknown dataset: {dataset_name}")
else:
if dataset_name == "COCO":
class_list = ", ".join(VALIDATION_CLASSES["COCO"])
elif dataset_name == "ADE":
class_list = ", ".join(VALIDATION_CLASSES["ADE"])
else:
raise ValueError(f"Unknown dataset: {dataset_name}")
return prompt.replace("<50 classes>", class_list)
def process_entry(self, entry, acc_list, photo2answer):
"""
Process a single entry and classify objects in the image.
Args:
entry (dict): Data entry to process.
acc_list (list): List to accumulate accuracy data.
photo2answer (dict): Dictionary to map photo paths to predictions.
Returns:
None
"""
prompt = self._generate_prompt(entry["data_source"])
for index in range(1, 6): # Each entry has 5 objects
image_path = self.dataset_path + entry["folder"].replace("jpg", "png")
image = Image.open(image_path)
if index == 1:
cumulative_prompt = prompt + f" obj{index}:"
else:
cumulative_prompt = cumulative_prompt + f", obj{index}:"
processed_image = self.image_processor.preprocess_image(image)
predicted_class_str = self.model_handler.generate_response(cumulative_prompt, processed_image)
try:
predicted_class = self.segment_classes(predicted_class_str)
print("predicted_class: ", predicted_class)
except Exception as e:
self.total_predictions += 5 - index + 1
break
photo2answer[image_path.split("/")[-1] + "-" + str(index)] = predicted_class_str
if len(predicted_class) >= index:
entry["objects"][index - 1]["prediction"] = predicted_class[index - 1]
true_class = entry["objects"][index - 1]["name"].lower()
pred_class = predicted_class[index - 1].lower()
cumulative_prompt += " " + true_class
self.y_true.append(true_class)
self.y_pred.append(pred_class)
if pred_class == true_class:
self.correct_predictions += 1
acc_list[index - 1] += 1
else:
self.total_predictions += 5 - index + 1
break
self.total_predictions += 5
def get_evaluation(setting):
"""
Get the appropriate evaluation class based on the setting and data type.
Args:
setting (str): Evaluation setting.
data_type (str): Type of data being processed ('train' or 'validation').
Returns:
class: Corresponding evaluation class.
"""
if setting == "default":
return MultiObjectEvaluation
elif setting == "student-forcing":
return StudentForcingEvaluation # Example, change as needed
elif setting == "teacher-forcing":
return TeacherForcingEvaluation # Example, change as needed
elif setting == "single":
return SingleObjectEvaluation
else:
raise ValueError(f"Unknown setting: {setting}")