Skip to content

SLDGroup/MobileViGv2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MobileViGv2

Scaling Graph Convolutions for Mobile Vision

PDF | Arxiv

William Avery, Mustafa Munir, and Radu Marculescu

Overview

This repository contains the source code for Scaling Graph Convolutions for Mobile Vision

python -m torch.distributed.launch --nproc_per_node=1 --nnodes=1 --use_env main.py --data-path ../../Datasets/ILSVRC/Data/CLS-LOC/ --model mobilevigv2 --output_dir mobilevigV2_test_results

Pretrained Models

Weights trained on ImageNet-1K, COCO 2017 Object Detection and Instance Segmentation, and ADE20K Semantic Segmentation can be downloaded here.

detection

Contains all of the object detection and instance segmentation backbone code and config.

segmentation

Contains all of the semantic segmentation backbone code and config.

models

Contains the main MobileViGv2 model code.

util

Contains utility scripts.

Usage

Installation Image Classification

conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.6 -c pytorch -c conda-forge
conda install mpi4py
pip install -r requirements.txt

Image Classification

Train image classification:

python -m torch.distributed.launch --nproc_per_node=num_GPUs --nnodes=num_nodes --use_env main.py --data-path /path/to/imagenet --model mobilevigv2_model --output_dir mobilevigv2_results

For example:

python -m torch.distributed.launch --nproc_per_node=1 --nnodes=1 --use_env main.py --data-path ../../Datasets/ILSVRC/Data/CLS-LOC/ --model mobilevigv2_m --output_dir mobilevigv2_test_results

Test image classification:

python -m torch.distributed.launch --nproc_per_node=num_GPUs --nnodes=num_nodes --use_env main.py --data-path /path/to/imagenet --model mobilevigv2_model --resume pretrained_model --eval

For example:

python -m torch.distributed.launch --nproc_per_node=1 --nnodes=1 --use_env main.py --data-path ../../Datasets/ILSVRC/Data/CLS-LOC/ --model mobilevigv2_s --resume pretrained_model --eval

Installation Object Detection and Instance Segmentation

conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.6 -c pytorch -c conda-forge
pip install timm submitit mmcv-full mmdet==2.28
pip install -U openmim

Object Detection and Instance Segmentation

Detection and instance segmentation on MS COCO 2017 is implemented based on MMDetection. We follow settings and hyper-parameters of PVT, PoolFormer, and EfficientFormer for comparison.

All commands for object detection and instance segmentation should be run from the /detection directory.

Data preparation

Prepare COCO 2017 dataset according to the instructions in MMDetection.

ImageNet Pretraining

Put ImageNet-1K pretrained weights of backbone as

MobileViGv2
├── Results
│   ├── model
│   │   ├── model.pth
│   │   ├── ...

Train object detection and instance segmentation:

python -m torch.distributed.launch --nproc_per_node num_GPUs --nnodes=num_nodes --node_rank 0 main.py configs/mask_rcnn_mobilevigv2_model --mobilevigv2_model mobilevigv2_model --work-dir Output_Directory --launcher pytorch > Output_Directory/log_file.txt 

For example:

python -m torch.distributed.launch --nproc_per_node 2 --nnodes 1 --node_rank 0 main.py configs/mask_rcnn_mobilevigv2_m_fpn_1x_coco.py --mobilevigv2_model mobilevigv2_m --work-dir detection_results/ --launcher pytorch > detection_results/mobilevigv2_m_run_test.txt 

Test object detection and instance segmentation:

python -m torch.distributed.launch --nproc_per_node=num_GPUs --nnodes=num_nodes --node_rank 0 test.py configs/mask_rcnn_mobilevigv2_model --checkpoint Pretrained_Model --eval {bbox or segm} --work-dir Output_Directory --launcher pytorch > log_file.txt

For example:

python -m torch.distributed.launch --nproc_per_node=4 --nnodes=1 --node_rank 0 test.py configs/mask_rcnn_mobilevigv2_m_fpn_1x_coco.py --checkpoint Pretrained_Model.pth --eval bbox --work-dir detection_results/ --launcher pytorch > detection_results/mobilevigv2_m_run_evaluation.txt

Installation Semantic Segmentation

conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.6 -c pytorch -c conda-forge
pip install -U openmim
mim install mmengine
mim install mmcv-full
mim install "mmsegmentation <=0.30.0"

Train semantic segmentation:

Semantic segmentation on ADE20K is implemented based on MMSegmentation. We follow settings and hyper-parameters of PVT, PoolFormer, and EfficientFormer for comparison.

python -m torch.distributed.launch --nproc_per_node 2 --nnodes 1 --node_rank 0 tools/train.py configs/sem_fpn/fpn_mobilevigv2_m_ade20k_40k.py --mobilevigv2_model mobilevigv2_m --work-dir semantic_results/ --launcher pytorch > semantic_results/mobilevigv2_m_run_semantic.txt

Citation

If our code or models help your work, please cite MobileViG (CVPRW 2023), MobileViGv2 (CVPRW 2024), and GreedyViG (CVPR 2024):

@InProceedings{MobileViGv2_2024,
    author    = {Avery, William and Munir, Mustafa and Marculescu, Radu},
    title     = {Scaling Graph Convolutions for Mobile Vision},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
    month     = {June},
    year      = {2024},
    pages     = {5857-5865}
}
@InProceedings{mobilevig2023,
    author    = {Munir, Mustafa and Avery, William and Marculescu, Radu},
    title     = {MobileViG: Graph-Based Sparse Attention for Mobile Vision Applications},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
    month     = {June},
    year      = {2023},
    pages     = {2211-2219}
}
@InProceedings{GreedyViG_2024_CVPR,
    author    = {Munir, Mustafa and Avery, William and Rahman, Md Mostafijur and Marculescu, Radu},
    title     = {GreedyViG: Dynamic Axial Graph Construction for Efficient Vision GNNs},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2024},
    pages     = {6118-6127}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published