-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathann_alt.py
48 lines (34 loc) · 1.8 KB
/
ann_alt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from __future__ import print_function
import numpy as np
import pandas as pd
from sklearn.ensemble import BaggingRegressor
from myml.nn import NnRegression
from myml.files import load
from utils import cv_generate
X2, X2_test, y = load("data/XXtestY250_r2td")
X_extra = pd.read_csv('data/ngramMatch_07.csv').values
X_extra_test = pd.read_csv('data/ngramMatch_test_07.csv').values
X_1234 = load('data/train1234_c1_r')
X_test_1234 = load('data/test1234_c1_r')
X_1234_2 = load('data/train1234_2_c1_r')
X_test_1234_2 = load('data/test1234_2_c1_r')
X_1234_3 = load('data/train1234_3_c1_r')
X_test_1234_3 = load('data/test1234_3_c1_r')
X_anti_1234 = load('data/train_anti_1234_c1_r')
X_test_anti_1234 = load('data/test_anti_1234_c1_r')
X_union_f, X_test_union_f = load('data/XXunion_f_norm')
train_test_alt = pd.read_csv('data/alt_query_features_train_and_test_v01.csv').values
train_alt = train_test_alt[:10158]
test_alt = train_test_alt[10158:]
train_ngram = load('data/train1234_ngram_r')
test_ngram = load('data/test1234_ngram_r')
# psim_train = pd.read_csv('data/product_simscore_train.csv').values
# psim_test = pd.read_csv('data/product_simscore_test.csv').values
# tf_train = pd.read_csv('data/Tf_idf_train.csv', header=None).values
# tf_test = pd.read_csv('data/Tf_idf_test.csv', header=None).values
X = np.hstack((X2, X_extra, X_1234, X_1234_2, X_1234_3, X_union_f, X_anti_1234, train_alt, train_ngram))
X_test = np.hstack((X2_test, X_extra_test, X_test_1234, X_test_1234_2, X_test_1234_3, X_test_union_f, X_test_anti_1234, test_alt, test_ngram))
np.random.seed(44)
nn = NnRegression(nb_epoch=40, dropx=[0.3, 0.5, 0.5], nb_neuronx=[1024, 512], validation_split=0., verbose=0)
b = BaggingRegressor(nn, 10, bootstrap=False, verbose=0, random_state=1)
cv_generate(b, "ann_alt", X, y, X_test, generate_test=True, xempty=None)