forked from matlab-deep-learning/transformer-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbert.m
32 lines (31 loc) · 1.13 KB
/
bert.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
function mdl = bert(nvp)
% bert Pretrained BERT transformer model
% mdl = bert loads a pretrained BERT-Base model and downloads the model
% weights and vocab file if necessary.
%
% mdl = bert('Model', modelName) loads the BERT model specified by
% modelName. Supported values for modelName are "base" (default),
% "multilingual-cased","medium","small","mini", and "tiny".
% Copyright 2021 The MathWorks, Inc.
arguments
nvp.Model (1,1) string {mustBeMember(nvp.Model,[
"base"
"multilingual-cased"
"medium"
"small"
"mini"
"tiny"])} = "base"
end
% Download the license file
bert.internal.getSupportFilePath(nvp.Model,"bert.RIGHTS");
params = bert.load(nvp.Model);
% Get the IgnoreCase hyperparameter, then remove it, downstream code
% shouldn't need it.
ignoreCase = params.Hyperparameters.IgnoreCase;
% Get vocab file
vocabFile = bert.internal.getSupportFilePath(nvp.Model,"vocab.txt");
params.Hyperparameters = rmfield(params.Hyperparameters,'IgnoreCase');
mdl = struct(...
'Tokenizer',bert.tokenizer.BERTTokenizer(vocabFile,'IgnoreCase',ignoreCase),...
'Parameters',params);
end