-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdonor_id.R
679 lines (618 loc) · 28.5 KB
/
donor_id.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
## Donor deconvolution in multiplexed scRNA-seq.
#' Donor deconvolution of scRNA-seq data, replaced by function vireo
#' @param ... arguments passed to \code{vireo}
#' @export
donor_id <- function(...) {
message("donor_id is an alias function, please use vireo in future.")
vireo(...)
}
#' Donor deconvolution of scRNA-seq data
#'
#' @param cell_data either character(1), path to a VCF file containing variant
#' data for cells, or a list containing A and D matrices
#' @param donor_data either character(1), path to a VCF file containing genotype
#' data for donors, or a matrix for donor genotypes, matched to cell data
#' @param n_donor integer(1), number of donors to infer if not given genotypes
#' @param check_doublet logical(1), should the function check for doublet cells?
#' @param n_init A integer. The number of random initializations for variational
#' inference, which can be useful to avoid local optima if not given genotypes.
#' Default: 1 if given GT, 5 if not given GT.
#' @param n_proc An integer. The number of processors to use.
#' @param n_vars_threshold integer(1), if the number of variants with coverage
#' in a cell is below this threshold, then the cell will be given an
#' "unassigned" donor ID (default: 10)
#' @param singlet_threshold numeric(1), threshold for posterior probability of
#' donor assignment (must be in [0, 1]); if best posterior probability for a
#' donor is greater then the threshold, then the cell is assigned to that donor
#' (as long as the cell is not determined to be a doublet) and if below the
#' threshold, then the cell's donor ID is "unassigned"
#' @param doublet_threshold numeric(1), threshold for summarised posterior
#' probability of doublet detection (must be in [0, 1]);
#' @param verbose logical(1), should the function output verbose information
#' while running?
#' @param ... arguments passed to \code{vireo_flock}
#'
#' @details This function reads in all elements of the provided VCF file(s) into
#' memory, so we highly recommend filtering VCFs to the minimal appropriate set
#' of variants (e.g. with the bcftools software) before applying them to this
#' function.
#'
#' @return a list with elements: \code{logLik}, log-likelihood of the fitted
#' model; \code{theta}, ; \code{GT}, a matrix of inferred genotypes for each
#' donor; \code{GT_doublet}, a matrix of inferred genotypes for each possible
#' doublet (pairwise combinations of donors); \code{prob}, a matrix of posterior
#' probabilities of donor identities for each cell; \code{prob_doublet}, a
#' matrix of posterior probabilities for each possible doublet for each cell;
#' \code{A}, a variant x cell matrix of observed read counts supporting the
#' alternative allele; \code{D}, a variant x cell matrix of observed read depth;
#' \code{assigned}, a data.frame reporting the cell-donor assignments with
#' columns "cell" (cell identifier), "donor_id" (inferred donor, or "doublet" or
#' "unassigned"), "prob_max" (the maximum posterior probability across donors),
#' "prob_doublet" (the probability that the cell is a doublet), "n_vars" (the
#' number of variants with non-zero read depth used for assignment).
#'
#' @author Yuanhua Huang and Davis McCarthy
#'
#' @export
#'
vireo <- function(cell_data, donor_data = NULL, n_donor=NULL,
check_doublet = TRUE, n_init=NULL, n_proc=1,
n_vars_threshold = 10, singlet_threshold = 0.9,
doublet_threshold = 0.9, verbose = FALSE, ...) {
message("vireo is switched to Python: https://vireoSNP.readthedocs.io.")
message("Please use the Python package in future.")
if (typeof(cell_data) == "character") {
in_data <- load_cellSNP_vcf(cell_data)
} else {
in_data <- cell_data
}
if (is.null(donor_data)) {
in_data[["GT_donors"]] <- NULL
} else{
if (typeof(donor_data) == "character") {
in_data[["GT_donors"]] <- load_GT_vcf(donor_data)
} else {
in_data[["GT_donors"]] <- donor_data
}
mm <- match(row.names(in_data$D), row.names(in_data$GT_donors))
if (sum(!is.na(mm)) == 0) {
stop("Error: No row names matched between cell_data and donor_data!")
} else if (sum(is.na(mm)) > 0) {
message(paste(sum(is.na(mm)), "out of", length(mm), "SNPs in",
"cell_data can't match donor_data."))
}
in_data$D <- in_data$D[!is.na(mm), ]
in_data$A <- in_data$A[!is.na(mm), ]
in_data$GT_donors <- in_data$GT_donors[mm[!is.na(mm)], ]
}
if (verbose) {
message("Donor ID using ", nrow(in_data$A), " variants")
}
out <- vireo_flock(in_data$A, in_data$D, GT = in_data$GT_donors,
K = n_donor, check_doublet = check_doublet,
n_init = n_init, n_proc = n_proc, verbose = verbose, ...)
## output data
out$A <- in_data$A
out$D <- in_data$D
# out$GT <- in_data$GT_cells #out has estimated GT output
## assign data frame
n_vars <- Matrix::colSums(out$D > 0)
assigned <- assign_cells_to_clones(out$prob, threshold = singlet_threshold)
colnames(assigned) <- c("cell", "donor_id", "prob_max")
if (check_doublet) {
assigned$prob_doublet <- matrixStats::rowSums2(out$prob_doublet)
} else {
assigned$prob_doublet <- NA
}
assigned$n_vars <- n_vars
assigned$donor_id[assigned$prob_max < singlet_threshold] <- "unassigned"
assigned$donor_id[assigned$prob_doublet >= doublet_threshold] <- "doublet"
assigned$donor_id[n_vars < n_vars_threshold] <- "unassigned"
out$assigned <- assigned
out
}
#' Variational inference for donor deconvolution with or without genotypes.
#'
#' @param A A matrix of integers. Number of alteration reads in SNP i cell j
#' @param D A matrix of integers. Number of reads depth in SNP i cell j
#' @param GT A matrix of integers for genotypes. The donor-SNP configuration.
#' @param K An integer. The number of donors to infer if GT is not given nor
#' complete.
#' @param K_amplify A float. The amplify ratio of donor number in the first run
#' @param n_init A integer. The number of random initializations for variational
#' inference, which can be useful to avoid local optima if not given genotypes.
#' Default: 1 if given GT, 5 if not given GT.
#' @param n_proc An integer. The number of processors to use.
#' @param random_seed An integer. The seed for random initialization.
#' @param GT_prior A matix of float, with the same size of GT_prob output, i.e.,
#' N*K-by-3 if there are 3 genotypes.
#' @param ... arguments passed to \code{vireo_core}
#' @details Users should typically use \code{\link{vireo}} rather than this
#' lower-level function.
#'
#' @return a list containing
#' \code{logLik}, the log likelihood.
#' \code{theta}, a vector denoting the binomial parameters for each genotype.
#' \code{prob}, a matrix of posterior probability of cell assignment to donors.
#' The summary may less than 1, as there are some probabilities go to doublets.
#' \code{prob_doublet}, a matrix of posterior probability of cell assignment to
#' each inter-donor doublet.
#' \code{GT}, the input GT or a point estimate of genotype of donors. Note,
#' this may be not very accurate, especially for lowly expressed SNPs.
#' \code{GT_doublet}, the pair-wise doublet genotype based on GT.
#'
#' @import stats
#' @export
#'
vireo_flock <- function(A, D, K=NULL, K_amplify=1.5, GT=NULL, GT_prior=NULL,
n_init=NULL, n_proc=1, random_seed=NULL, ...) {
start_time <- Sys.time()
if (!is.null(random_seed)) {set.seed(random_seed)}
## Check input data
if (is.null(GT) && is.null(K)) {
stop("GT and K cannot both be NULL.")
}
if (!is.null(GT)) {
if (nrow(A) != nrow(GT)) {
stop("nrow(A) and nrow(GT) must be the same and aligned.")
}
}
if (!is.null(GT) && !is.null(K) && ncol(GT) < K) {
GT_part_prob <- transpose_GT_prob(GT_to_prob(GT), ncol(GT))
GT <- NULL
} else {
GT_part_prob <- NULL
}
if (nrow(A) != nrow(D) || ncol(A) != ncol(D)) {
stop("A and D must have the same size.")
}
A[is.na(A)] <- 0
D[is.na(D)] <- 0
idx <- which(as.matrix((A > 0) & (A != D)))
logLik_coeff <- sum(lchoose(c(D[idx]), c(A[idx])), na.rm = TRUE)
A <- Matrix::Matrix(A, sparse = TRUE)
D <- Matrix::Matrix(D, sparse = TRUE)
if (is.null(K_amplify) || K_amplify < 1) {
K_run1 <- K
} else {
K_run1 <- ceiling(K_amplify * K)
}
## Multiple initializations
if (is.null(n_init)) {
if (is.null(GT)) {n_init <- 4}
else {n_init <- 2}
}
cat(paste("RUN1:", n_init, "random initializations...\n"))
if (is.null(n_proc) || n_proc == 1) {
res_VB_list <- list()
for (ii in seq_len(n_init)) {
res_VB_list[[ii]] <-
vireo_core(A, D, K = K_run1, GT = GT, GT_prior = GT_prior, ...)
}
} else{
library(foreach)
doMC::registerDoMC(n_proc)
res_VB_list <- foreach::foreach(i = 1:n_init) %dopar% {
vireo_core(A, D, K = K_run1, GT = GT, GT_prior = GT_prior, ...)
}
}
## Only keep the initialization with highest lower bound
VB_info <- matrix(0, nrow = n_init, ncol = 2)
colnames(VB_info) <- c("n_iter", "LBound")
for (ii in seq_len(n_init)) {
VB_info[ii, 1] <- res_VB_list[[ii]]$n_iter
VB_info[ii, 2] <- res_VB_list[[ii]]$LBound
}
print(t(VB_info))
res_VB_best <- res_VB_list[[which.max(VB_info[, "LBound"])]]
## for second run if there are extra components
if (!is.null(GT_part_prob) || (is.null(GT) && K_run1 > K)) {
sum_cell <- round(colSums(res_VB_best$prob), 1)
idx_don <- order(sum_cell, decreasing = TRUE)
cat(paste("RUN1: Search in", K_run1, "donors. Estimated sizes:\n"))
print(t(sum_cell[idx_don]))
if (sum_cell[idx_don[K]] / sum_cell[idx_don[K + 1]] < 2) {
message(paste("The difference between K_th and K+1_th",
"donor is too small.\n Try a bigger value for",
"n_init to reach global optima."))
}
cat(paste("RUN2: Tuning the largest", K, "donors with genotype prior",
"estimated from RUN1.\n"))
GT_prob_trans <- transpose_GT_prob(res_VB_best$GT_prob, K_run1)
GT_prob_trans <- GT_prob_trans[, idx_don]
if (!is.null(GT_part_prob)) {
col_idx <- cardelino::colMatch(GT_part_prob, GT_prob_trans)
if (max(col_idx) > K) {
warning("Input genotypes don't all match top K donors!")
}
if (length(unique(col_idx)) != length(col_idx)) {
warning(paste("Some input donors are missed! Try a bigger",
"value for n_init to reach global optima."))
}
don_use <- seq_len(K_run1)[!seq_len(K_run1) %in% col_idx]
don_use <- c(col_idx, don_use)[1:K]
GT_prob_trans[, col_idx] <- GT_part_prob
GT_prior <- transpose_GT_prob(GT_prob_trans[, don_use], 3)
} else {
GT_prior <- transpose_GT_prob(GT_prob_trans[, 1:K], 3)
}
res_VB_best <- vireo_core(A, D, K = K, GT = GT, GT_prior = GT_prior, ...)
}
cat(paste("Finished in", round(Sys.time() - start_time, 2), "sec.\n"))
res_VB_best
}
#' Variational inference with a single run
#'
#' @param A A matrix of integers. Number of alteration reads in SNP i cell j
#' @param D A matrix of integers. Number of reads depth in SNP i cell j
#' @param K An integer. The number of donors to infer if not given GT.
#' @param GT A matrix of integers for genotypes. The donor-SNP configuration.
#' @param GT_prior A matix of float, with the same size of GT_prob output, i.e.,
#' N*K-by-3 if there are 3 genotypes.
#' @param check_doublet logical(1), if TRUE, check doublet, otherwise ignore.
#' @param check_doublet_iterative logical(1), if TRUE, check doublet iteratively,
#' otherwise only check once VB algorithm finishes.
#' @param theta_prior A matrix of float with size 3-by-2. The beta prior for
#' binomial parameters. If NULL as default,
#' theta_prior = matrix(c(0.3, 3, 29.7, 29.7, 3, 0.3), nrow = 3)
#' @param learn_theta logical(1), if TRUE, update theat, otherwise use default.
#' @param doublet_prior A float or string. The mode or fraction of doublet_prior:
#' NULL and uniform will give uniform weight to all singlet donor and doublet
#' donors. Auto or other string will use doublet_prior = N_cell / 100000. Float
#' between 0 and 1 will give doublet_prior as doublet_prior.
#' @param binary_GT logical(1), if TRUE, use categorical GT, otherwise use GT
#' probability.
#' @param min_iter A integer. The minimum number of iterations in VB algorithm.
#' @param max_iter A integer. The maximum number of iterations in VB algorithm.
#' The real iteration may finish earlier.
#' @param epsilon_conv A float. The threshold of lower bound increase for
#' detecting convergence.
#' @param verbose logical(1), If TRUE, output verbose information when running.
#'
#' @details Users should typically use \code{\link{vireo}} rather than this
#' lower-level function.
#'
#' @return a list containing
#' \code{logLik}, the log likelihood.
#' \code{theta}, a vector denoting the binomial parameters for each genotype.
#' \code{prob}, a matrix of posterior probability of cell assignment to donors.
#' The summary may less than 1, as there are some probabilities go to doublets.
#' \code{prob_doublet}, a matrix of posterior probability of cell assignment to
#' each inter-donor doublet.
#' \code{GT}, the input GT or a point estimate of genotype of donors. Note,
#' this may be not very accurate, especially for lowly expressed SNPs.
#' \code{GT_doublet}, the pair-wise doublet genotype based on GT.
vireo_core <- function(A, D, K=NULL, GT=NULL, GT_prior=NULL, learn_GT=TRUE,
theta_prior=NULL, learn_theta=TRUE,
check_doublet=TRUE, doublet_prior=NULL,
check_doublet_iterative=FALSE,
binary_GT=FALSE, min_iter=20, max_iter=200,
epsilon_conv=1e-2, verbose=FALSE) {
## preprocessing
N <- nrow(D) # number of SNPs
M <- ncol(D) # number of cells
B <- D - A
D_idx <- which(as.matrix(D) != 0) ## index of non-zero elements in D
A_vec <- as.matrix(A)[D_idx] ## non-zero element as a vector
#B_vec <- as.matrix(B)[D_idx]
D_vec <- as.matrix(D)[D_idx]
W_vec <- lchoose(D_vec, A_vec)
## initializate theta
gt_singlet <- c(0, 1, 2)
gt_doublet <- c(0.5, 1.5)
n_gt <- length(gt_singlet)
if (is.null(theta_prior)) {
theta_prior <- matrix(c(0.3, 3, 29.7, 29.7, 3, 0.3), nrow = 3)
row.names(theta_prior) <- paste0("GT=", c("0", "1", "2"))
colnames(theta_prior) <- c("beta_shape1", "beta_shape2")
}
theta_shapes <- theta_prior
## initialize GT
if (is.null(GT)) {
update_GT <- TRUE
if (is.null(GT_prior)) {
if (learn_GT == FALSE) {
message("Warning: No GT prior, so GT will be learned.")
}
GT_prior <- matrix(1 / length(gt_singlet), nrow = N * K,
ncol = length(gt_singlet))
GT_prob <- matrix(0, nrow = N * K, ncol = length(gt_singlet))
for (ii in seq_len(N * K)) {
GT_prob[ii, ] <- t(rmultinom(1, size = 1, GT_prior[ii, ]))
}
} else{
update_GT <- learn_GT
GT_prob <- GT_prior
# GT_prior[GT_prior > 0.999999] <- 0.999999
# GT_prior[GT_prior < 10^-8] <- 10^-8
GT_prior[GT_prior > 0.95] <- 0.95
GT_prior[GT_prior < 0.05] <- 0.05
GT_prior <- GT_prior / rowSums(GT_prior)
}
} else {
K <- ncol(GT) ## number of singlet donors
update_GT <- FALSE
GT_prob <- GT_to_prob(GT, gt_singlet)
}
## setting Psi, the donor prevalence
K2 <- K + (K - 1) * K / 2 # singlet and doublet donors
if (is.null(doublet_prior) || doublet_prior == "uniform") {
doublet_prior <- (K2 - K) / K2
} else if (!is.na(as.numeric(doublet_prior))) {
doublet_prior <- as.numeric(doublet_prior)
if (doublet_prior > 1 || doublet_prior < 0) {
warning("doublet_prior > 1 or <0!\n")
doublet_prior <- (K2 - K) / K2
}
} else {#including auto
doublet_prior <- ncol(D) / 100000
}
Psi <- c(rep((1 - doublet_prior) / K, K),
rep(doublet_prior / (K2 - K), (K2 - K)))
## VB iterations
LB <- rep(0, max_iter)
logLik <- logLik_new <- 0
for (it in seq_len(max_iter)) {
## update theta
if (learn_theta && it > max(min_iter - 5, min_iter * 2 / 3) ) {
theta_shapes <- theta_prior
for (ig in seq_len(ncol(GT_prob))) {
GT_prob_ig <- matrix(GT_prob[, ig], nrow = N)
theta_shapes[ig, 1] <- theta_prior[ig, 1] + sum(S1_gt * GT_prob_ig)
theta_shapes[ig, 2] <- theta_prior[ig, 2] + sum(S2_gt * GT_prob_ig)
}
}
## update donor ID
if (check_doublet && check_doublet_iterative &&
it > max(min_iter - 5, min_iter * 2 / 3)) {
GT_both <- get_doublet_GT(GT_prob, K)
theta_both <- get_doublet_theta(theta_shapes)
ID_prob_res <- get_ID_prob(A, D, GT_both, theta_both, Psi)
} else{
ID_prob_res <- get_ID_prob(A, D, GT_prob, theta_shapes, Psi)
}
ID_prob <- ID_prob_res$ID_prob
logLik_new <- ID_prob_res$logLik
S1_gt <- as.matrix(A %*% ID_prob[, seq_len(K)])
SS_gt <- as.matrix(D %*% ID_prob[, seq_len(K)])
S2_gt <- SS_gt - S1_gt
logLik_GT <- matrix(0, nrow = length(SS_gt), ncol = n_gt)
for (ig in seq_len(ncol(logLik_GT))) {
logLik_GT[, ig] <- (S1_gt * digamma(theta_shapes[ig, 1]) +
S2_gt * digamma(theta_shapes[ig, 2]) -
SS_gt * digamma(sum(theta_shapes[ig, ])))
}
## update GT
if (update_GT) {
log_GT_post <- logLik_GT + log(GT_prior)
log_GT_post <- log_GT_post - matrixStats::rowMaxs(log_GT_post)
GT_prob <- exp(log_GT_post) / rowSums(exp(log_GT_post))
if (binary_GT) {
for (ik in seq_len(nrow(logLik_GT))) {
idx_max <- which.max(logLik_GT[ik, ])
GT_prob[ik, ] <- 0
GT_prob[ik, idx_max] <- 1
}
}
}
# Check convergence
LB_p <- sum(logLik_GT * GT_prob) + sum(W_vec)
LB_p_ID <- sum(t(ID_prob) * log(Psi[1:K] / sum(Psi[1:K])))
LB_q_ID <- sum(ID_prob[, 1:K] * log(ID_prob[, 1:K]), na.rm = TRUE)
if (update_GT) {
LB_p_GT <- sum(GT_prob * log(GT_prior))
LB_q_GT <- sum(GT_prob * log(GT_prob), na.rm = TRUE)
} else {
LB_p_GT <- LB_q_GT <- 0
}
if (learn_theta) {
LB_p_theta <- nega_beta_entropy(theta_shapes, theta_prior)
LB_q_theta <- nega_beta_entropy(theta_shapes)
} else{
LB_p_theta <- LB_q_theta <- 0
}
# print(c(LB_p_ID, LB_p_GT, LB_p_theta, LB_p,
# LB_q_ID, LB_q_GT, LB_q_theta))
LB[it] <- (LB_p_ID + LB_p_GT + LB_p_theta + LB_p -
LB_q_ID - LB_q_GT - LB_q_theta)
if (verbose) { cat("It: ", it, " LB: ", LB[it],
" LB_diff: ", LB[it] - LB[it - 1], "\n")}
if (it > min_iter) {
if (is.na(LB[it]) || (LB[it] == -Inf)) { break }
if (LB[it] < LB[it - 1]) { message("Lower bound decreases!\n")}
if (it == max_iter) {warning("VB did not converge!\n")}
if (LB[it] - LB[it - 1] < epsilon_conv) { break }
}
# print(paste(it, logLik_new + sum(W_vec), LB_p,
# sum(logLik_ID) + sum(W_vec) ))
# if (it > min_iter) {
# if (abs(logLik_new - logLik) < epsilon_conv) { break }
# }
logLik <- logLik_new
}
## post doublet check
if (check_doublet && (!check_doublet_iterative)) {
GT_both <- get_doublet_GT(GT_prob, K)
theta_both <- get_doublet_theta(theta_shapes)
ID_prob_res <- ID_prob_res <- get_ID_prob(A, D, GT_both, theta_both, Psi)
ID_prob <- ID_prob_res$ID_prob
logLik <- ID_prob_res$logLik
## update GT
if (update_GT) {
S1_gt <- as.matrix(A %*% ID_prob[, seq_len(K)])
SS_gt <- as.matrix(D %*% ID_prob[, seq_len(K)])
S2_gt <- SS_gt - S1_gt
logLik_GT <- matrix(0, nrow = length(SS_gt), ncol = n_gt)
for (ig in seq_len(ncol(logLik_GT))) {
logLik_GT[, ig] <- (S1_gt * digamma(theta_shapes[ig, 1]) +
S2_gt * digamma(theta_shapes[ig, 2]) -
SS_gt * digamma(sum(theta_shapes[ig, ])))
}
log_GT_post <- logLik_GT + log(GT_prior)
log_GT_post <- log_GT_post - matrixStats::rowMaxs(log_GT_post)
GT_prob <- exp(log_GT_post) / rowSums(exp(log_GT_post))
if (binary_GT) {
for (ik in seq_len(nrow(logLik_GT))) {
idx_max <- which.max(logLik_GT[ik, ])
GT_prob[ik, ] <- 0
GT_prob[ik, idx_max] <- 1
}
}
}
}
## Print log info
if (verbose && check_doublet) {
cat(sprintf("Total iterations for doublet: %d; LBound: %.2f\n",
it, logLik))
} else if (verbose) {
cat(sprintf("Total iterations: %d; LBound: %.2f\n",
it, logLik))
}
## Return values
if (is.null(GT) || is.null(colnames(GT))) {
donor_names <- paste0("donor", seq_len(K))
} else {
donor_names <- colnames(GT)
}
if (check_doublet) {
combn_idx <- utils::combn(K, 2)
donor_names <- c(donor_names, paste0(donor_names[combn_idx[1,]], ",",
donor_names[combn_idx[2,]]))
}
row.names(ID_prob) <- colnames(D)
colnames(ID_prob) <- donor_names
prob_singlet <- ID_prob[, 1:K, drop = FALSE]
prob_doublet <- NULL
if (check_doublet) {
prob_doublet <- ID_prob[, (K + 1):K2, drop = FALSE]
}
if (is.null(GT)) {
GT <- matrix(gt_singlet[rowArgmax(GT_prob)], nrow = N)
row.names(GT) <- row.names(D)
colnames(GT) <- colnames(prob_singlet)
}
return_list <- list("LBound" = LB[it], "LBound_all" = LB[1:it],
"n_iter" = it, "theta" = theta_shapes,
"Psi" = Psi, "GT_prob" = GT_prob,
"GT" = GT, "prob" = prob_singlet,
"prob_doublet" = prob_doublet)
return_list
}
#' Negative entropy value for beta distribution
#' @param theta_shapes A matrix of float with size T-by-2. Each row has
#' beta parameters [shape1, shape2].
#' @param theta_prior A matrix of float with size T-by-2. Each row has
#' beta parameters [shape1, shape2]. If theta_prior is NULL, then the entropy
#' is calculated based on theta_shapes itself, otherwise based on theta_prior.
#' @return A list of T negative entropy values.
nega_beta_entropy <- function(theta_shapes, theta_prior=NULL) {
if (is.null(theta_prior)) {theta_prior <- theta_shapes}
out_val <- 0
for (ii in seq_len(nrow(theta_shapes))) {
out_val <- (out_val - lbeta(theta_prior[ii, 1], theta_prior[ii, 2]) +
(theta_prior[ii, 1] - 1) * digamma(theta_shapes[ii, 1]) +
(theta_prior[ii, 2] - 1) * digamma(theta_shapes[ii, 2]) -
(sum(theta_prior[ii, ]) - 2) * digamma(sum(theta_shapes[ii, ])))
}
out_val
}
#' Internal function to update cell assignement probability
#' @param A A matrix of integers. Number of alteration reads in SNP i cell j
#' @param D A matrix of integers. Number of reads depth in SNP i cell j
#' @param GT_prob A matix of float, with the size of N*K-by-3 if there are 3
#' genotypes.
#' @param theta_shapes A matrix of float with size 3-by-2. Each row is the beta
#' prior distribution parameters of the according genotype
#' @param Psi A voctor of float. The fraction of each donor.
#' @return A list containing \code{logLik} and \code{ID_prob}
get_ID_prob <- function(A, D, GT_prob, theta_shapes, Psi) {
M <- ncol(A)
N <- nrow(A)
K <- nrow(GT_prob) / N
logLik_ID <- matrix(0, nrow = M, ncol = K)
for (ig in seq_len(ncol(GT_prob))) {
S1 <- Matrix::t(A) %*% matrix(GT_prob[, ig], nrow = N)
SS <- Matrix::t(D) %*% matrix(GT_prob[, ig], nrow = N)
S2 <- SS - S1
logLik_ID <- logLik_ID + as.matrix(S1 * digamma(theta_shapes[ig, 1]) +
S2 * digamma(theta_shapes[ig, 2]) -
SS * digamma(sum(theta_shapes[ig, ])))
}
logLik_ID <- t(t(logLik_ID) + log(Psi[1:K]/sum(Psi[1:K])))
logLik_ID_amplify <- logLik_ID - matrixStats::rowMaxs(logLik_ID)
ID_prob <- exp(logLik_ID_amplify) / rowSums(exp(logLik_ID_amplify))
logLik_vec <- rep(NA, nrow(logLik_ID))
for (i in seq_len(nrow(logLik_ID))) {
logLik_vec[i] <- matrixStats::logSumExp(logLik_ID[i,], na.rm = TRUE)
}
logLik_val <- sum(logLik_vec, na.rm = TRUE)
list("logLik" = logLik_val, "ID_prob" = ID_prob)
}
#' Generate theta parameters for doublet genotype
#' @param theta_shapes A 3-by-2 matrix of beta paramters for genotype 0, 1, 2
#' @return a 5-by-2 matrix of beta paramters for genotype 0, 1, 2, 0.5, 1.5
get_doublet_theta <- function(theta_shapes) {
theta_shapes2 <- matrix(0, nrow = 2, ncol = 2)
row.names(theta_shapes2) <- paste0("GT=", c("0_1", "1_2"))
for (ii in seq_len(2)) {
theta_input <- theta_shapes[ii:(ii + 1), ]
theta_mean <- mean(theta_input[1:2, 1] / rowSums(theta_input[1:2,]))
shape_sum <- sqrt(sum(theta_input[1, ]) * sum(theta_input[2, ]))
theta_shapes2[ii, 1] <- theta_mean * shape_sum
theta_shapes2[ii, 2] <- (1 - theta_mean) * shape_sum
}
rbind(theta_shapes, theta_shapes2)
}
#' Generate genotype probability for doublets
#' @param GT_prob A matrix of genotype for singlets
#' @param K An integer for number of donors
#' @return \code{GT_both}, a matrix of genotype probability for both singlet
#' and doublet donors
get_doublet_GT <- function(GT_prob, K) {
N <- nrow(GT_prob) / K
cb_idx <- utils::combn(K, 2) ## column wise
GT_prob2 <- matrix(0, nrow = N * ncol(cb_idx), 5)
for (ik in seq_len(ncol(cb_idx))) {
idx1 = seq_len(N) + (cb_idx[1, ik] - 1) * N
idx2 = seq_len(N) + (cb_idx[2, ik] - 1) * N
idx3 = seq_len(N) + (ik - 1) * N
GT_prob2[idx3, 1] <- (GT_prob[idx1, 1] * GT_prob[idx2, 1])
GT_prob2[idx3, 2] <- (GT_prob[idx1, 2] * GT_prob[idx2, 2] +
GT_prob[idx1, 1] * GT_prob[idx2, 3] +
GT_prob[idx1, 3] * GT_prob[idx2, 1])
GT_prob2[idx3, 3] <- (GT_prob[idx1, 3] * GT_prob[idx2, 3])
GT_prob2[idx3, 4] <- (GT_prob[idx1, 1] * GT_prob[idx2, 2] +
GT_prob[idx1, 2] * GT_prob[idx2, 1])
GT_prob2[idx3, 5] <- (GT_prob[idx1, 2] * GT_prob[idx2, 3] +
GT_prob[idx1, 3] * GT_prob[idx2, 2])
}
GT_prob2 <- GT_prob2 / rowSums(GT_prob2)
GT_zero <- matrix(0, nrow = nrow(GT_prob),
ncol = (ncol(GT_prob2) - ncol(GT_prob)))
GT_both <- rbind(cbind(GT_prob, GT_zero), GT_prob2)
GT_both
}
#' Convert genotype matrix to genotype probability matrix
#' @param GT A matrix of genotype
#' @param gt_singlet A list of singlet genotyoe
GT_to_prob <- function(GT, gt_singlet=c(0, 1, 2)) {
GT_prob <- matrix(0, nrow = length(GT), ncol = length(gt_singlet))
colnames(GT_prob) <- paste0("GT=", gt_singlet)
for (ig in seq_len(length(gt_singlet))) {
GT_prob[which(GT == gt_singlet[ig]), ig] <- 1
}
GT_prob
}
#' Transpose genotype probability matrix
#' @param GT_prob A N*K-by-T matrix of genotype probability
#' @param K An integer
#' @return A N*T-by-K matrix of genotype probability
transpose_GT_prob <- function(GT_prob, K) {
N <- nrow(GT_prob) / K
T <- ncol(GT_prob)
GT_prob_new <- matrix(0, N * T, K)
for (ii in seq_len(K)) {
GT_prob_new[, ii] <- GT_prob[((ii - 1) * N + 1):(ii * N), ]
}
GT_prob_new
}