-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfinetune.py
258 lines (213 loc) · 8.87 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import os
import json
import time
import ml_collections
import wandb
import jax
import jax.numpy as jnp
from jax.experimental import mesh_utils, multihost_utils
from jax.sharding import Mesh, PartitionSpec as P
import torch
from torch.utils.data import Dataset, DataLoader, Subset
from utils.datapipe import create_dataloaders, BaseDataset, BatchParser
from utils.model_init import (
create_model,
create_optimizer,
create_train_state,
compute_total_params,
)
from utils.checkpoint import (
create_checkpoint_manager,
save_checkpoint,
restore_checkpoint,
)
from utils.train_eval import create_train_step, create_eval_step, eval_model_over_batch
def generate_paths_and_keys(data_path, split, suffixes):
input_keys = [f"cmme_{split}_inputs_{suffix}" for suffix in suffixes]
output_keys = [f"cmme_{split}_outputs_{suffix}" for suffix in suffixes]
label_keys = [f"cmme_{split}_labels_{suffix}" for suffix in suffixes]
input_files = [os.path.join(data_path, f"{key}.mat") for key in input_keys]
output_files = [os.path.join(data_path, f"{key}.mat") for key in output_keys]
label_files = [os.path.join(data_path, f"{key}.mat") for key in label_keys]
return {
"input_files": input_files,
"output_files": output_files,
"label_files": label_files,
"input_keys": input_keys,
"output_keys": output_keys,
"label_keys": label_keys,
}
def create_datasets(config):
data_path = config.dataset.data_path
train_suffixes = config.dataset.train_files
test_suffixes = config.dataset.test_files
train_data = generate_paths_and_keys(data_path, "tl_train", train_suffixes)
test_data = generate_paths_and_keys(data_path, "tl_test", test_suffixes)
train_dataset = BaseDataset(
train_data["input_files"],
train_data["output_files"],
train_data["label_files"],
train_data["input_keys"],
train_data["output_keys"],
train_data["label_keys"],
downsample_factor=config.dataset.downsample_factor,
)
test_dataset = BaseDataset(
test_data["input_files"],
test_data["output_files"],
test_data["label_files"],
test_data["input_keys"],
test_data["output_keys"],
test_data["label_keys"],
downsample_factor=config.dataset.downsample_factor,
)
if config.dataset.train_samples < len(train_dataset):
train_indices = torch.randperm(len(train_dataset))[
: config.dataset.train_samples
]
train_dataset = Subset(train_dataset, train_indices)
return train_dataset, test_dataset
def restore_pretrained_params(config: ml_collections.ConfigDict, model, tx):
state = create_train_state(config, model, tx)
# Create checkpoint manager
ckpt_path = os.path.join(os.getcwd(), config.model.model_name, "ckpt")
ckpt_mngr = create_checkpoint_manager(config.saving, ckpt_path)
# Restore checkpoint
state = restore_checkpoint(ckpt_mngr, state)
params = state.params
return params
def train_and_evaluate(config: ml_collections.ConfigDict):
# Initialize model
model = create_model(config)
# Create learning rate schedule and optimizer
lr, tx = create_optimizer(config)
# Restore pretrained params and create train state for finetuning
if config.job == "from_scratch":
params = None
elif config.job == "from_pretrained":
print("Restoring pretrained params...")
params = restore_pretrained_params(config, model, tx)
state = create_train_state(config, model, tx, params=params)
num_params = compute_total_params(state)
print(f"Model storage cost: {num_params * 4 / 1024 / 1024:.2f} MB of parameters")
# Device count
num_local_devices = jax.local_device_count()
num_devices = jax.device_count()
print(f"Number of devices: {num_devices}")
print(f"Number of local devices: {num_local_devices}")
# Create sharding for data parallelism
mesh = Mesh(mesh_utils.create_device_mesh((jax.device_count(),)), "batch")
state = multihost_utils.host_local_array_to_global_array(state, mesh, P())
# Create train and eval step functions
train_step = create_train_step(config, model)
eval_step = create_eval_step(config, model)
# Create dataloaders
train_dataset, test_dataset = create_datasets(config)
train_loader, test_loader = create_dataloaders(config, train_dataset, test_dataset)
# Create batch parser
sample_batch = next(iter(train_loader))
batch_parser = BatchParser(config, sample_batch)
# Create checkpoint manager
work_dir = os.path.join(
os.getcwd(),
config.model.model_name,
f"{config.mode}_sample_{config.dataset.train_samples}_" + config.job,
)
ckpt_path = os.path.join(work_dir, "ckpt")
ckpt_mngr = create_checkpoint_manager(config.saving, ckpt_path)
# Save config
config_dict = config.to_dict()
config_path = os.path.join(work_dir, "config.json")
with open(config_path, "w") as json_file:
json.dump(config_dict, json_file, indent=4)
# Initialize W&B
wandb_config = config.wandb
wandb.init(
project=wandb_config.project,
name=f"{config.model.model_name}_{config.mode}_sample_{config.dataset.train_samples}_{config.job}",
config=config,
)
# Zero shot evaluation
metrics = {"l1_error": [], "l2_error": [], "rmse": []}
for batch in test_loader:
batch = jax.tree.map(jnp.array, batch)
batch = batch_parser.query_all(batch)
batch = multihost_utils.host_local_array_to_global_array(
batch, mesh, P("batch")
)
batch_metrics, _, _ = eval_model_over_batch(
config, state, batch, mesh, eval_step
)
for key in metrics.keys():
metrics[key].append(batch_metrics[key])
# Compute mean metrics over test dataset
metrics = {key: jnp.array(value).mean().item() for key, value in metrics.items()}
print(
f"Zero shot evaluation: l1_error: {metrics['l1_error']: .3e}, l2_error: {metrics['l2_error']: .3e}, rmse: {metrics['rmse']: .3e}"
)
# Fine-tuning
last_loss = 1.0
rng_key = jax.random.PRNGKey(0)
for epoch in range(10000):
start_time = time.time()
for batch in train_loader:
rng_key, subkey = jax.random.split(rng_key)
batch = jax.tree.map(jnp.array, batch)
batch = batch_parser.random_query(batch, rng_key=subkey)
batch = multihost_utils.host_local_array_to_global_array(
batch, mesh, P("batch")
)
state, loss = train_step(state, batch)
# Logging
if epoch % config.logging.log_interval == 0:
# Evaluate model
metrics = {"l1_error": [], "l2_error": [], "rmse": []}
for batch in test_loader:
batch = jax.tree.map(jnp.array, batch)
batch = batch_parser.query_all(batch)
batch = multihost_utils.host_local_array_to_global_array(
batch, mesh, P("batch")
)
batch_metrics, _, _ = eval_model_over_batch(
config, state, batch, mesh, eval_step
)
for key in metrics.keys():
metrics[key].append(batch_metrics[key])
# Compute mean metrics over test dataset
metrics = {
key: jnp.array(value).mean().item() for key, value in metrics.items()
}
# Log metrics
step = int(state.step)
loss = loss.item()
end_time = time.time()
log_dict = {"loss": loss, "lr": lr(step), **metrics}
if jax.process_index() == 0:
wandb.log(log_dict, step) # Log metrics to W&B
print(
"step: {}, loss: {:.3e}, l1_error: {:.3e}, l2_error: {:.3e}, rmse: {:.3e}, time: {:.3e}".format(
step,
loss,
metrics["l1_error"],
metrics["l2_error"],
metrics["rmse"],
end_time - start_time,
)
)
# If loss blowup, restart training from the last checkpoint
if loss >= last_loss * 3:
print("Loss blowup detected, reverting to last checkpoint")
state = restore_checkpoint(ckpt_mngr, state)
continue
# Save checkpoints
if loss < 1.1 * last_loss:
save_checkpoint(ckpt_mngr, state)
# Update the best loss
last_loss = loss
# Break if training has reached the maximum number of steps or max hours
if step >= config.training.max_steps:
break
# Save final checkpoint
print("Training finished, saving final checkpoint...")
save_checkpoint(ckpt_mngr, state)
ckpt_mngr.wait_until_finished()