-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper_functions.R
455 lines (349 loc) · 18.7 KB
/
helper_functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# DESeq2 count normalisation across replicates
normalize_counts = function(raw.counts, cond.table, diff.levels, dds.filename) {
raw.counts = round(raw.counts)
row.names(cond.table) = names(raw.counts)
cond.table$condition = factor(cond.table$condition, levels = diff.levels)
dds = DESeqDataSetFromMatrix(countData = raw.counts,
colData = cond.table,
design = ~ condition)
dds = DESeq(dds)
saveRDS(dds, dds.filename)
dds = estimateSizeFactors(dds)
return(counts(dds, normalized = T))
}
# Wrapper function for DESeq2 expression normalisation
generate_norm_gene_counts = function(master.table, domain.name) {
p.gene.sample.names = unlist(stringr::str_match_all(names(master.table), paste0("WT_D[179]+_", domain.name, ".*")))
p.raw.counts = master.table %>%
dplyr::select(all_of(p.gene.sample.names))
p.cond = data.frame(condition = stringr::str_extract(names(p.raw.counts), "D(7|9|11)"))
p.diff.levels = c("D7", "D9", "D11")
p.norm.gene.counts = as.data.frame(normalize_counts(p.raw.counts,
p.cond,
p.diff.levels,
paste0("../r_results/predict_correlated_expressed_gene/",
domain.name, "_gene_dds.rds"))) %>%
mutate(gene_names = gene.names) %>%
dplyr::select(gene_names, all_of(names(.)[names(.) != "gene_names"]))
saveRDS(p.norm.gene.counts,
file = paste0("../r_results/predict_correlated_expressed_gene/",
domain.name, "_norm_counts_expression.rds"))
return(p.norm.gene.counts)
}
# Calculate z-scores per feature across samples
generate_scaled_counts = function(count.df, annot.col.name) {
rownames(count.df) = NULL
count.df.clean = count.df %>%
column_to_rownames(var = annot.col.name)
count.df.clean.scaled = as.data.frame(t(apply(count.df.clean, 1, scale)))
names(count.df.clean.scaled) = names(count.df.clean)
count.df.clean.final = count.df.clean.scaled %>%
rownames_to_column(var = annot.col.name)
return(count.df.clean.final)
}
# Wrapper function for DESeq2 accessibility normalisation
generate_norm_chrom_counts = function(master.table, region.annot, domain.name) {
p.region.sample.names = unlist(stringr::str_match_all(names(master.table), paste0("WT_D[179]+_", domain.name, ".*")))
p.raw.counts = master.table %>%
dplyr::select(all_of(p.region.sample.names))
p.cond = data.frame(condition = stringr::str_extract(names(p.raw.counts), "D(7|9|11)"))
p.diff.levels = c("D7", "D9", "D11")
p.norm.region.counts = as.data.frame(normalize_counts(p.raw.counts,
p.cond,
p.diff.levels,
paste0("../r_results/predict_correlated_expressed_gene/",
domain.name, "_region_dds.rds"))) %>%
mutate(region_names = region.annot$Geneid) %>%
dplyr::select(region_names, all_of(names(.)[names(.) != "region_names"]))
saveRDS(p.norm.region.counts,
file = paste0("../r_results/predict_correlated_expressed_gene/",
domain.name, "_norm_counts_accessibility.rds"))
return(p.norm.region.counts)
}
# Select expressed genes
select_expressed_genes = function(p.norm.gene.counts, expression.median) {
sample.names = names(p.norm.gene.counts)[names(p.norm.gene.counts) != "gene_names"]
return(p.norm.gene.counts %>%
rowwise() %>%
mutate(median_expression = median(c_across(all_of(sample.names)))) %>%
ungroup() %>%
filter(median_expression > expression.median) %>%
pull(gene_names))
}
# Select genes by expression amplitude
select_genes_by_amplitude = function(p.norm.gene.counts, expression.amplitude.remove) {
sample.names = names(p.norm.gene.counts)[names(p.norm.gene.counts) != "gene_names"]
p.norm.gene.counts %<>%
rowwise() %>%
mutate(min_z = min(c_across(all_of(sample.names)))) %>%
mutate(max_z = max(c_across(all_of(sample.names)))) %>%
mutate(ampl = max_z - min_z) %>%
ungroup() %>%
arrange(-ampl)
cutoff.rownumber = round((1 - expression.amplitude.remove) * nrow(p.norm.gene.counts))
return (p.norm.gene.counts %>%
head(cutoff.rownumber))
}
# Generate TSS coordinates from transcript coordinates
generate_tss = function(tx.ranges, tss.bed.filename) {
tss.ranges = GRanges(seqnames = seqnames(tx.ranges),
ranges = IRanges(start = ifelse(strand(tx.ranges) == "+",
start(ranges(tx.ranges)),
end(ranges(tx.ranges)) - 1),
end = ifelse(strand(tx.ranges) == "+",
start(ranges(tx.ranges)) + 1,
end(ranges(tx.ranges))),
names = names(ranges(tx.ranges))),
strand = strand(tx.ranges),
gene_name = tx.ranges$gene_name)
export(tss.ranges, tss.bed.filename)
return(tss.ranges)
}
# Generate a TSS annotation
generate_tss_annot = function(p.genes, mm10.annot.genes, p.tss.filename) {
p.genes.annot = mm10.annot.genes[mm10.annot.genes$gene_name %in% p.genes, ]
p.genes.ranges = GRanges(seqnames = p.genes.annot$chr,
ranges = IRanges(start = p.genes.annot$start,
end = p.genes.annot$stop,
names = p.genes.annot$tx_name),
strand = strand(p.genes.annot$strand),
gene_name = p.genes.annot$gene_name)
p.tss.ranges = generate_tss(p.genes.ranges, p.tss.filename)
return(p.tss.ranges)
}
# Generate gene coordinates from transcript coordinates
generate_genes_annot = function(p.genes, mm10.annot.genes, p.genes.filename) {
p.genes.annot = mm10.annot.genes[mm10.annot.genes$gene_name %in% p.genes, ]
p.genes.ranges = GRanges(seqnames = p.genes.annot$chr,
ranges = IRanges(start = p.genes.annot$start,
end = p.genes.annot$stop,
names = p.genes.annot$tx_name),
strand = strand(p.genes.annot$strand),
gene_name = p.genes.annot$gene_name)
p.genes.merged = GenomicRanges::reduce(p.genes.ranges,
ignore.strand = F)
export(p.genes.merged, p.genes.filename)
return(p.genes.merged)
}
# Calculate and plot the distribution of distance between NFIA-dependent region and the closest TSS (strand ignored)
calc_dist_distributions = function(dep.regions, expr.tss.ranges, domain.name) {
dist.hits.obj = distanceToNearest(dep.regions, expr.tss.ranges, ignore.strand = T)
dist.vector = mcols(dist.hits.obj)$distance
cat("The number of NFIA-dependent regions in promoters (<= 1 kbp from a TSS; strand ignored):",
length(dist.vector[dist.vector <= 1000]),
"(", round(length(dist.vector[dist.vector <= 1000]) / length(dist.vector) * 100, 2), "% )\n")
}
# Generate the region-gene assignment area around a region as a vicinity of a fixed radius (in kbp)
generate_vicinity_radius = function(dep.regions, vicinity.radius, vicinity.ranges.bed.filename) {
vicinity.radius = vicinity.radius * 1000
dep.regions.df = as.data.frame(dep.regions) %>%
mutate(seqnames = as.character(seqnames)) %>%
mutate(strand = as.character(strand)) %>%
rowwise() %>%
mutate(., max_position = mm10.chr.sizes[seqnames] - 1) %>%
ungroup()
vicinity.ranges = GRanges(seqnames = dep.regions.df$seqnames,
ranges = IRanges(start = ifelse(dep.regions.df$start - vicinity.radius > 0,
dep.regions.df$start - vicinity.radius,
1),
end = ifelse(dep.regions.df$end + vicinity.radius < dep.regions.df$max_position,
dep.regions.df$end + vicinity.radius,
dep.regions.df$max_position),
names = dep.regions.df$name),
strand = Rle(strand("*")))
export(vicinity.ranges, vicinity.ranges.bed.filename)
return(vicinity.ranges)
}
# Add a "_gene" suffix
add_gene_suffix = function(column.names) {
return(paste0(column.names, "_gene"))
}
# Add a "_region" suffix
add_region_suffix = function(column.names) {
return(paste0(column.names, "_region"))
}
# Find Pearson correlation coefficients between region accessibility and gene expression
calc_correlations = function(vicinity.gr, dep.tss,
norm.region.counts, norm.gene.counts,
region.sample.names, gene.sample.names,
domain.name, corr.rds.filename) {
region.tss.shared.sample.names = intersect(region.sample.names, gene.sample.names)
tss.vicinity.hits = GenomicRanges::findOverlaps(query = dep.tss,
subject = vicinity.gr,
type = "within",
select = "all",
ignore.strand = T)
tss.hits = data.frame(tss_num = queryHits(tss.vicinity.hits)) %>%
left_join(as.data.frame(dep.tss) %>%
rownames_to_column(var = "tss_id") %>%
rownames_to_column(var = "tss_num") %>%
mutate(tss_num = as.integer(tss_num)) %>%
dplyr::select(tss_num,
gene_name),
by = c("tss_num" = "tss_num")) %>%
left_join(norm.gene.counts,
by = c("gene_name" = "gene_names")) %>%
dplyr::select(tss_num,
gene_name,
all_of(sort(names(.)[names(.) %in% region.tss.shared.sample.names]))) %>%
dplyr::rename_with(add_gene_suffix, all_of(region.tss.shared.sample.names))
vicinity.hits = data.frame(vicinity_num = subjectHits(tss.vicinity.hits)) %>%
left_join(as.data.frame(vicinity.gr) %>%
rownames_to_column(var = "region_id") %>%
mutate(region_names = unlist(stringr::str_replace(region_id, "\\.[1-9]+$", ""))) %>%
rownames_to_column(var = "vicinity_num") %>%
mutate(vicinity_num = as.integer(vicinity_num)) %>%
dplyr::select(vicinity_num,
region_names,
region_id),
by = c("vicinity_num" = "vicinity_num")) %>%
left_join(norm.region.counts,
by = c("region_names" = "region_names")) %>%
dplyr::select(vicinity_num,
region_id,
all_of(sort(names(.)[names(.) %in% region.tss.shared.sample.names]))) %>%
dplyr::rename_with(add_region_suffix, all_of(region.tss.shared.sample.names))
vicinity.tss.corr = vicinity.hits %>%
bind_cols(tss.hits) %>%
dplyr::select(-vicinity_num,
-tss_num) %>%
distinct() %>%
rowwise() %>%
mutate(pcc = cor(x = c_across(ends_with("_region")),
y = c_across(ends_with("_gene")),
method = "pearson")) %>%
ungroup()
vicinity.tss.corr.final = vicinity.tss.corr %>%
dplyr::select(region_id,
gene_name,
pcc) %>%
mutate(abs_pcc = abs(pcc))
cat(domain.name, ":\n")
cat("Number of region-gene associations:", nrow(vicinity.tss.corr.final), "\n")
cat("Number of unique regions :", length(unique(vicinity.tss.corr.final$region_id)), "\n")
cat("Number of unique genes :", length(unique(vicinity.tss.corr.final$gene_name)), "\n")
cat("---\n")
saveRDS(vicinity.tss.corr.final, corr.rds.filename)
return(vicinity.tss.corr.final)
}
# Calc all pairwise correlations between regions and genes
calc_correlations_pairs_all = function(p.dep.regions,
p.norm.region.counts, p.norm.gene.counts,
p.region.sample.names, p.gene.sample.names,
domain.name, corr.rds.filename) {
p.names = intersect(p.region.sample.names, p.gene.sample.names)
p.norm.region.counts.dep = p.norm.region.counts %>%
filter(region_names %in% p.dep.regions$name) %>%
dplyr::select(all_of(c("region_names", p.names))) %>%
column_to_rownames(var = "region_names")
p.norm.gene.counts.shared = p.norm.gene.counts %>%
dplyr::select(all_of(c("gene_names", p.names))) %>%
column_to_rownames(var = "gene_names")
p.bkgd.radius.df = as.data.frame(cor(x = t(p.norm.region.counts.dep), y = t(p.norm.gene.counts.shared))) %>%
rownames_to_column(var = "region_names") %>%
gather("gene_names", "pcc", -region_names) %>%
dplyr::rename("region_id" = "region_names",
"gene_name" = "gene_names") %>%
mutate(abs_pcc = abs(pcc)) %>%
tibble()
cat(domain.name, ":\n")
cat("Number of region-gene associations:", nrow(p.bkgd.radius.df), "\n")
cat("Number of unique regions :", length(unique(p.bkgd.radius.df$region_id)), "\n")
cat("Number of unique genes :", length(unique(p.bkgd.radius.df$gene_name)), "\n")
cat("---\n")
saveRDS(p.bkgd.radius.df, corr.rds.filename)
return(p.bkgd.radius.df)
}
calc_correlations_pairs_outside_chr = function(p.dep.regions, p.expr.tss.ranges,
p.norm.region.counts, p.norm.gene.counts,
p.region.sample.names, p.gene.sample.names,
domain.name, corr.rds.filename) {
p.names = intersect(p.region.sample.names, p.gene.sample.names)
p.norm.region.counts.dep = p.norm.region.counts %>%
filter(region_names %in% p.dep.regions$name) %>%
dplyr::select(all_of(c("region_names", p.names))) %>%
column_to_rownames(var = "region_names")
p.norm.gene.counts.shared = p.norm.gene.counts %>%
dplyr::select(all_of(c("gene_names", p.names))) %>%
column_to_rownames(var = "gene_names")
p.bkgd.radius.df = as.data.frame(cor(x = t(p.norm.region.counts.dep), y = t(p.norm.gene.counts.shared))) %>%
rownames_to_column(var = "region_names") %>%
gather("gene_names", "pcc", -region_names) %>%
dplyr::rename("region_id" = "region_names",
"gene_name" = "gene_names") %>%
mutate(abs_pcc = abs(pcc)) %>%
tibble() %>%
left_join(as.data.frame(p.dep.regions) %>%
dplyr::select(name, seqnames) %>%
dplyr::rename("region_chr" = "seqnames"),
by = c("region_id" = "name")) %>%
left_join(as.data.frame(p.expr.tss.ranges) %>%
rownames_to_column(var = "transcript_id") %>%
dplyr::select(gene_name, seqnames) %>%
distinct() %>%
dplyr::rename("gene_chr" = "seqnames"),
by = c("gene_name" = "gene_name")) %>%
mutate(region_chr = as.character(region_chr),
gene_chr = as.character(gene_chr)) %>%
filter(region_chr != gene_chr)
cat(domain.name, ":\n")
cat("Number of region-gene associations:", nrow(p.bkgd.radius.df), "\n")
cat("Number of unique regions :", length(unique(p.bkgd.radius.df$region_id)), "\n")
cat("Number of unique genes :", length(unique(p.bkgd.radius.df$gene_name)), "\n")
cat("---\n")
saveRDS(p.bkgd.radius.df, corr.rds.filename)
return(p.bkgd.radius.df)
}
# Calculate empirical p-values for target PCCs
calc_empirical_pvalue = function(abs.pcc, abs_pcc_sorted, bkgd.df_nrow) {
return(sum(abs_pcc_sorted >= abs.pcc) / bkgd.df_nrow)
}
# Calculate and plot pairwise PCCs between NFIA-dependent regions
calc_and_plot_dep_region_pccs = function(dep.regions,
norm.region.counts,
domain.name) {
dep.region.norm.counts.transp = norm.region.counts %>%
filter(region_names %in% dep.regions$name) %>%
column_to_rownames(var = "region_names") %>%
t()
norm.region.counts.transp.cor = cor(dep.region.norm.counts.transp, method = "pearson")
dep.region.cor.plot = data.frame(region_pcc = norm.region.counts.transp.cor[upper.tri(norm.region.counts.transp.cor)]) %>%
ggplot(aes(x = region_pcc)) +
geom_density(fill = "grey") +
scale_x_continuous(limits = c(-1, 1)) + #,
#breaks = breaks_pretty(n = 20)) +
theme_classic()
ggsave(filename = paste0("../r_results/predict_correlated_expressed_gene/plots/",
domain.name, "_dep_regions_corr",
"_regions_fdr", fdr, "_min-l2fc", min.l2fc,
"_min-baseMean", min.baseMean, "_density.pdf"),
plot = dep.region.cor.plot)
cat("The number of pairwise PCCs between NFIA-dependent regions in", domain.name, ":",
length(norm.region.counts.transp.cor[upper.tri(norm.region.counts.transp.cor)]), "\n")
}
# Count expressed genes whose TSS(s) are inside a radius-defined vicinity of a least one NFIA-dependent region
count_expr_genes_inside_vicinity = function(dep.regions.vicinity.radius, expr.tss.ranges) {
overlaps.hits.obj = findOverlaps(expr.tss.ranges,
dep.regions.vicinity.radius,
type = "within",
select = "all",
ignore.strand = T)
expr.genes.inside = unique(expr.tss.ranges$gene_name[unique(queryHits(overlaps.hits.obj))])
return(length(expr.genes.inside))
}
find_expr_genes_inside_vicinity = function(dep.regions.vicinity.radius, expr.tss.ranges) {
overlaps.hits.obj = findOverlaps(expr.tss.ranges,
dep.regions.vicinity.radius,
type = "within",
select = "all",
ignore.strand = T)
expr.genes.inside = unique(expr.tss.ranges$gene_name[unique(queryHits(overlaps.hits.obj))])
return(expr.genes.inside)
}
# Re-format a vicinity GRanges read from a BED file
trim_vicinity_gr = function(vicinity.gr) {
names(vicinity.gr) = vicinity.gr$name
vicinity.gr$name = NULL
vicinity.gr$score = NULL
return(vicinity.gr)
}